编	号:	K5	91S107-19160	
保护	等级:	企	业C级	
	第1	版	2019-12	

黄石经济技术开发区・铁山区

区域性地震安全性评价报告

长江三峡勘测研究院有限公司(武汉) 二〇一九年十二月

黄石经济技术开发区·铁山区 区域性地震安全性评价报告

声 明

本成果仅限于合同指定的项目使用。未经知识产权拥有者书面 授权,不得翻印(录)、传播或他用,对于侵权行为将保留追究 其法律责任的权利。

长江三峡勘测研究院有限公司(武汉)

二〇一九年十二月

《黄石经济技术开发区·铁山区区域性地震安全性评价报告》

委托单位: 黄石经济技术开发区·铁山区应急管理局 承担单位: 长江三峡勘测研究院有限公司(武汉)

总经理: 陈又华

总工程师: 李会中

项目总负责人:李茂华 考试年

技术负责人:房艳国朱建罗文行 房艳国 末年 愛知

报告审查:李茂华 考试年

各专业技术负责人:

地震活动性分析:董建辉 周 鲁 宁文涛 建雄 周 鲁 卢述涛 地震地质与潜在震源区划分:房艳国 刘文清 贺赤诚

唐艳国 动行风 贺赤诚

地震危险性分析及场地反应分析: 宋 伟 贺赤诚 宁文涛 宋 伊 贺赤诚 卢主涛

地震地质灾害调查与评价:周 洋 陈金龙 同泽 陈金龙

钻孔声波物探测试: 孙冠军 罗文行 孙冠军 罗泽

场地钻探及地质勘察:周 洋 陈金龙 周泽 陈金龙

主要参加人员:房艳国 周 洋 宁文涛 陈金龙 贺赤诚 龚 成 董建辉 朱 建 周 鲁 孙冠军

0	前言		. 1
	0.1	项目概述	. 1
	0.2	项目实施情况	.2
	0.3	地震工程地质条件勘测范围	.4
	0.4	地震动参数	.4
	0.5	技术思路	. 5
	0.6	组织实施	.7
	0.7	项目组织	.7
	0.8	工作量统计	. 8
	0.9	致谢	.8
1	区垣	或地震活动性	10
	1.1	地震资料收集及目录编制	10
	1.2	区域地震分布特征	16
	1.3	区域地震统计区划分	19
	1.4	各地震统计区地震活动时间分布特征及未来趋势	26
	1.5	区域震源机制解及现代构造应力场	34
	1.6	区域地震活动性评价	39
2	区垣	或地震构造环境	41
	2.1	大地构造单元划分及特征简述	41
	2.2	区域新构造运动及其与地震活动的关系	43
	2.3	区域主要断裂活动特征	47
	2.4	区域构造环境分析	55
3	近场	杨区地震构造环境	65

目 录

	3.1	近场区地质特征6	5
	3.2	近场区新构造运动	68
	3.3	近场区主要断裂活动性7	0'
	3.4	近场区地震活动特征9	2
	3.5	近场区地震构造综合评价10	12
4	目材	示区断层勘查与活动性鉴定10	13
	4.1	目标区断层勘查10	13
	4.2	目标区断层活动性鉴定11	2
5	地鶦	震危险性概率分析 11	4
	5.1	地震危险性概率分析方法概述11	4
	5.2	地震区活动性参数确定11	6
	5.3	潜在震源区的划分及活动性参数确定12	20
	5.4	地震动衰减关系13	3
	5.5	地震危险性分析结果13	7
6	地鶦	臺工程地质条件15	1
	6.1	场地勘测15	51
	6.2	场地工程地质条件15	1
	6.3	剪切波速测试15	7
	6.4	典型土动力学实验分析18	3
	6.5	目标区工程地质单元划分18	5
	6.6	场地类别19	1
	6.7	小结19	94
7	场	也设计地震动参数19	15
	7.1	基岩人工合成地震动时程19	95

	7.2 场地土层地震反应分析	205
	7.3 场地设计地震动参数确定	217
8	地震地质灾害评价	272
	8.1 目标区地质环境	272
	8.2 场地地震地质灾害评价	274
	8.3 场地地震地质灾害综合评价	276
9	结论及使用说明	277
	9.1 区域地震活动性分析结果	277
	9.2 区域地震构造环境评价结果	277
	9.3 近场区地震活动性分析与地震构造环境评价结果	278
	9.4 目标区断层勘查与活动性鉴定	279
	9.5 地震危险性概率分析结果	279
	9.6 目标区地震工程地质条件勘测	281
	9.7 场地设计地震动参数	281
	9.8 场地地震地质灾害评价结果	281
	9.9 使用说明	284
1(0 成果查询系统编制及说明	286
	10.1 界面及功能介绍	286
	10.2 操作说明	287
	10.3 特别提醒	287
参	*考文献	289
肾	す图 01-02: 黄石经济技术开发区・铁山区区域性地震安全性评价项目	钻探布
蒖	Ĩ 人高密度电阻率法测线布置图	

附图 03-14: 黄石经济技术开发区・铁山区区域性地震安全性评价项目高密度

电阻率法 A-A'、B-B'、C-C'、D-D'、E-E'、F-F'、G-G'、H-H'、I-I'、J-J'、 K-K'、L-L'测线解译成果图 附件 1: 钻孔岩芯照片(HSZK01~HSZK25)

- 附件 2: 土物性试验结果
- 附件 3: OSL 测年试验结果
- 附件 4: 动三轴试验结果

0 前言

0.1 项目概述

2019年始黄石经济技术开发区与铁山区实施一体化发展改革,两区资源优势共享互补,发展空间不断扩大,现辖7个镇(街、管理区),面积490km²,总人口33万人。黄石经济技术开发区·铁山区区域性地震安全性评价项目总面积约为17.3km²。

本次区域性地震安评的目标区主要分为两个片区,即经济开发区黄 金山工业园区和铁山区西部工业新城。为了便于项目开展,将目标区进 一步划分为章山地块(①)、汪仁地块(②)、四棵地块(③)、铁山地块 (④)。黄石经济技术开发区·铁山区区域性地震安评区块地理位置示意 图见图 0.1-1。

章山地块(①)面积约 1.8km²,地块东侧规划为产业用地,目前已经 规划在建有华新新材料、华盛人造板等新材料加工厂;地块西侧为还建住 宅用地和商业住宅用地。

汪仁地块(②)面积约为 9.86km²。其中大棋路以北、金山大道以南、

庆红路以东、王叶一路以西规划为工业用地,目前已建成和在建的主要为 光电子信息产业项目,包括定颖电子、宏和电子、华创产业等;大棋路以 北、金山大道以南、王叶一路以东、月亮山路以西规划为绿化用地和商业 用地,目前在建项目有保利时代等;规划大广高速连接线与黄金大道之间 主要规划工业用地、部分为商业用地和政府用地,目前大部分已场坪;地 块最东侧金山大道与刘伟线之间的区域主要为商业用地,少部分为工业用 地。

四棵地块(③)面积约为4.45km²。地块以林家庄路为界,路西侧主要 为居住区,分布有百花居住区和四棵居住区;路东侧主要为工业用地,目 前建成和在建的有天鼎机械、绅琛智能、经纬纺织机械、美丽林装备等先 进装备制造企业,日丰管材、赫得纳米等新材料加工企业,台光电子、星 河电路、上达电子等电子信息企业,国药、香港永兴隆、世星药业、燕舞 药业、远大飞云制药等医药企业。

铁山区西部工业新城(铁山地块④)面积约1.19km²,其发展定位是通 过培育黑海工谷的高端制造业、正荣高新的高分子材料制造业、楠田工模 具的特殊模具钢业、携康电子的电子配件业等产业的发展,打造高端装备 制造、新材料、智能模具、电子信息等产业园。

目标区拟建工业厂房均为单层钢结构,住宅楼和办公楼为多层或小高 层建筑,无高层建筑物,无高耸等需要特殊设防的建筑,亦不存在密闭高 压力容器和易燃、易爆等受地震影响的特殊生产设施。

0.2 项目实施情况

0.2.1 工作内容和技术要求

本项目按照《中华人民共和国防震减灾法》、国家标准《工程场地地震

2

安全性评价》(GB17741-2005)、以及《湖北省区域性地震安全性评价工作 技术大纲(试行)》(鄂震发[2018]173 号)等相关技术标准和规范的要求, 进行区域性地震安全性评价。

根据《湖北省区域性地震安全性评价工作技术大纲(试行)》(鄂震发 [2018]173号)、《工程场地地震安全性评价》(GB17741-2005),确定以下区 域范围:

I)区域主要断裂与地震构造研究评价范围以不小于目标区外延 200km
 范围,经纬度坐标 28°~32°、112°30′~117°30′;

2)区域地震活动性、地震区、带研究范围以不小于目标区外延 200km
范围,应包括场址所在地震区边界及相邻地震区,经纬度坐标 28°~32°、
112°30′~117°30′;

3)近场区主要断裂与地震构造研究评价范围以不小于目标区外延25km 范围,经纬度坐标 29°50′~30°30′、114°30′~115°30′。

按照《湖北省区域性地震安全性评价工作技术大纲(试行)》(鄂震发 [2018]173号)、《工程场地地震安全性评价》(GB 17741-2005)的要求,本 项目地震安全性评价工作开展了以下七方面的工作:

1)区域与近场区地震活动性;

2)区域地震构造背景;

3) 近场区活动断裂调查与评价;

4) 地震危险性概率分析;

5) 目标区地震工程地质条件勘测及目标区断层活动性鉴定;

6)场地地震动参数确定;

7)场地地震地质灾害评价。

0.2.2 遵循的主要技术标准及法规

3

本次目标区地震安全性评价遵循的主要技术标准及法规如下:

1)《中华人民共和国防震减灾法》

2)《湖北省区域性地震安全性评价工作技术大纲(试行)》(鄂震发 [2018]173号)

3)《工程场地地震安全性评价》(GB17741-2005)

4)《中国地震动参数区划图》(GB18306-2015)

5)《建筑抗震设计规范》(GB50011-2010)(2016年版)

6)《软土地区岩土工程勘察规程》(JGJ83-2011)

7)《岩土工程勘察规范》(GB50021-2001)(2009年版)

0.3 地震工程地质条件勘测范围

目标区主要分为两大片区(图 0.3-1、2),经济开发区黄金山工业园区 及铁山区西部工业新城(铁山地块④),总面积约 17.38km²。其中,经济开 发区又可划分为三个地块:章山地块(①)、汪仁地块(②)、四棵地块(③), 勘测范围以合同约定的范围开展相关勘探、取样、物探测试等工作。

图 0.3-1 经济开发区工作范围

0.4 地震动参数

根据《中国地震动参数区划图》(GB18306-2015),目标区 50 年超越 概率 10%水平向地震动峰值加速度为 0.05g,对应地震基本烈度VI度,地

震动反应谱特征周期为 0.35s。

0.5 技术思路

主要技术思路为:1)吸收国内外地震科学研究的最新成果和方法, 在详细全面的野外考察基础上,研究区域和近场区范围地震活动性、地 震构造和断裂活动性;2)采用地震危险性分析概率方法,进行场地地震 危险性分析;3)根据地震危险性分析结果,给出工程场地基岩地震动参 数;4)根据工程场地地震工程地质条件和场地地震动参数,初步评价场 地地震地质灾害。(见图 0.5-1 总体技术思路框图)。

具体来说,主要包括地震危险性概率分析、场地地震动参数确定和 场地地震地质灾害评价三个部分。

1) 地震危险性概率分析

在区域地震活动性与地震地质背景研究的基础上,划分潜在震源区, 确定地震活动性参数,结合地震动衰减关系,采用地震危险性分析专用 程序包,计算目标区 50 年超越概率 63%、10%、2%和 100 年超越概率 63%、10%、2%的基岩地震动参数。

2)场地地震动参数确定

根据地震危险性分析计算结果,结合工程地质勘察资料及现场调查,依据工程场地的地震工程地质条件,进行场地土层地震反应计算,确定 50 年超越概率 63%、10%、2%和 100 年超越概率 63%、10%、2%的场地 地震动参数。

图 0.5-1 区域性地地震安全性评价总体技术思路框图

3)场地地震地质灾害评价

通过对工程场地及其附近的地形地貌、地质构造实地调查,依据场 地及其附近的工程地质条件、水文地质条件,并结合云南地区历史强震 的震害经验,评价给定地震影响下工程场地可能发生的地震地质灾害。 工作主要采用的资料有:1)《中国地震动参数区划图》的成果资料; 2)中国地震局近年来有关的活动断裂、地震构造、地震活动、地球物理 等方面的最新研究成果;3)地矿、石油等部门有关的地质构造、新构造、 地球物理等方面的资料;4)针对本工作实施的近场区及其附近的野外调 查和测试资料;5)工程场地附近已有的地震安全性评价报告。

0.6 组织实施

长江三峡勘测研究院有限公司(武汉)于2019年10月成立项目组, 首先收集工程场地及其周边地区的地质资料、地震资料、ETM影像资料 以及相关研究资料,并进行处理和成图;野外调查于2019年10月中旬 开始,对近场区涉及的断层与第四纪地层和地貌进行了考察,野外调查 结束后即转入资料整理分析阶段,在分析野外地质资料、地震资料及场 地工程地质勘察资料的基础上,进行地震活动性、地震构造评价、地震 危险性分析及场地地震反应分析计算等专题研究,并编写专题报告。于 2019年12月下旬完成本报告初稿,并对报告初稿进行校核修改后,提交 至湖北省地震学会进行技术审查。因新冠疫情影响,湖北省地震学会于 2020年5月7日返回技术审查意见为"修改后通过",按专家意见修改后 复审报告于2020年8月下旬提交至湖北省地震学会复审,最终报告于 2020年9月9日通过审查。

0.7 项目组织

项目总负责人:李茂华(处长教授级高工)。

项目技术负责人:房艳国(高工)、朱建(高工)。

地震活动性分析:董建辉(高工)、周鲁(博士工程师)、宁文涛(工程师)。

7

地震地质与潜在震源区划分:房艳国(高工)、刘文清(教授级高工)、 贺赤诚(博士工程师)。

地震危险性分析及场地反应分析: 宋伟(高工)、贺赤诚(博士工程师)、 宁文涛(工程师)。

地震地质灾害调查与评价:周洋(工程师)、陈金龙(博士工程师)。

钻孔声波物探测试: 孙冠军(高工)、罗文行(博士高工)

场地钻探及地质勘察:周洋(工程师)、陈金龙(博士工程师)

报告各章节内容由各专业分别编写,朱建负责报告的统稿,罗文行负 责报告校核。

0.8 工作量统计

累计完成的实际工作量统计结果见表 0.8-1。

表 0.8-1

实际完成工作量一览表

序号	工作项目		单位	工作量	备注
1	区域地震地质	资料收集	组日	20	
2	地震活动性	资料收集	组日	20	
2	近场区构造	此列田木	条	4	
3	近场区构运	则衣师宣	剖面	13	
		此刻进去		1	
4	目标区断层活动性鉴定	断农师鱼	剖面	2	各项工作均
		高密度电法剖面	米	7800	按相关规程
		小口径钻孔	m/孔	600/25	规范完成
5	工程场址勘测	剪切波测试	孔	25	
3	上柱场地动则	动三轴实验	组	2	
		土物性试验	组	3	
6	计算	危险性概率	组日	10	
0		地震动参数确定	组日	25]
7	地质灾害调查	调查点	个	4	

0.9 致谢

在本项目的现场实施过程中得到了黄石市经开区,铁山区应急管理 局的鼎力支持及湖北省地震局震害防御处的热心指导,在报告编写及修 改过程中得到了湖北省地震局及地震学会地震安全性评价专家的热心指导,在此一并表示感谢!

1 区域地震活动性

研究区域地震活动性的目的在于通过分析工程场地所在区域范围内的 地震活动时空分布特征,评价区域地震环境,估计未来时段地震活动趋势 和水平,为合理划分潜在震源区和确定地震活动性参数提供依据。

1.1 地震资料收集及目录编制

根据《湖北省区域性地震安全性评价工作技术大纲》(试行)要求,对目标区地震安全性评价有影响的地域称为区域,应不小于目标区外延200km (112°30′~117°30′E、28°~32°N)。

1.1.1 主要资料来源

1) 震级 M≥4.7 地震从以下资料中选取:

国家地震局震害防御司编《中国历史强震目录》(公元前 23 世纪至公元 1911 年)(M≥4.7),地震出版社, 1995 年;

中国地震局震害防御司编《中国近代地震目录》(公元 1912 年至 1990 年 M≥4.7),中国科学技术出版社,1999 年;

《中国地震历史资料汇编》(谢毓寿、蔡美彪等, 1983), 1-5卷;

《湖北地震史料汇考》(熊继平等, 1986);

中国地震台网中心《中国地震台网(CSN)地震目录》(1970年1月1日至2017年8月31日);

中国地震台网中心《中国地震台网正式目录(统一编目目录)》(2009 年至 2019 年 12 月)。

2) 震级 4.6≥M≥1.0 地震从以下资料中选取:

中国地震台网中心《中国地震详目》(1970年至2017年12月); 湖北省地震局提供的台网地震目录(1970年至2019年12月)。

1.1.2 地震震级及震中确定原则

1) 地震震级确定

历史地震震级采用的是 M_s,这部分地震为 M_s≥4.7 级以上地震。其中, 无仪器记录的地震,其震级的确定均由史料记载评定其震中烈度,再按震 级(M_s)与震中烈度的经验关系换算出;凡有仪器记录的地震,其震级以 仪器测定的为准。

而现代地震通常用近震震级 *M*_L 为与历史地震震级统一,以往将其转换 为 *M* 震级,采用的转换公式见式 (1.1-1):

$M_{\rm S} = 1.13 M_{\rm L} - 1.08 \tag{1.1-1}$

该公式是郭履灿等(1971)根据邢台地震资料进行统计得出的,适用 于中国华北地区,其它地区兼用,震中距 Δ≤1000km(国家地震局震害防 御司,1990)。

在编辑新一代区划图地震目录时,对 1990-2007 年间同时测定有 MS、 ML 数据且震源深度 < 70km 的地震(6577 个)进行了拟合,拟合结果如式(1.1-2):

$$M_{\rm S} = 0.932M_{\rm L} + 0.295 \tag{1.1-2}$$

图 1.1-1 显示为公式(1.1-1)和公式(1.1-2)的拟合直线。从图中可见, 公式(1.1-1)的直线明显偏于数据组的下侧,说明公式(1.1-1)已不适用。 为了比较,在图中还给出公式(1.1-3)的拟合直线作为参考:

$$M_{\rm S} = M_{\rm L}$$
 (1.1-3)

公式(1.1-3)相当于 *M*_s与 *M*_L之间不用转换。从图中可直观地看到公式(1.1-3)与公式(1.1-2)的直线很接近,只在直线两端有些分开。考虑 到数据点的分散,拟合关系的不确定性较大等因数,粗略地认为公式(1.1-2) 与公式(1.1-3)基本一致。

图 1.1-1 震级数据组及拟合直线

本项目中将以公式(1.1-3)代替用了三十多年的公式(1.1-1),对已有 仪测 *M*s 震级的地震目录直接采用,对未测得 *M*s 的现代小震数据直接沿用 *M*L震级数据,并且最终用国标规定的"M"代替"*M*s"和"*M*L"。

2) 地震震中位置和震源深度的选取

凡同时具有仪器震中与宏观震中位置的地震,均取宏观震中位置。为 与地震动衰减关系确定及地震活动性参数估计一致,这里只选用浅源地震 (h≤70km)。

1.1.3 区域地震资料完整性分析

本研究区区域范围涉及长江中游地震统计区, 郑庐地震统计区和长江 下游-南黄海地震统计区以及华北平原地震统计区, 并且主要受前三个地 震统计区影响较大。从地震统计区的地震记载和黄玮琼等(1994)的研究 来看, 郑庐地震统计区从 1484 年开始历史地震记载基本完整, 长江中游和 下游-南黄海地震统计区公元 1484 年后 M≥6.0、公元 1800 年后 M≥5.0、 1900 年后 M≥4.7 级历史地震记载较为完整。

12

由于不同地区历史文化原因和记载原因,历史地震记载缺失情况不同。 本研究区域大部分位于长江中游地震统计区,因此历史地震资料的完整性 与长江中游地震统计区基本一致。

图 1.1-2 湖北省地震监测台网建设及监测能力分布图

区域最早开始地震监测工作开展于 1958 年,对于区域台网监测能力分析表明,1970 年后大部分地区能监控 M≥3.0 级地震,随着台网不断完善(图 1.1-2),目前湖北地区可监控至 M≥1.2-1.9 级。地震震级 - 频度关系没有出现明显中小震端"掉头"现象,确定现代地震于 1970 年后 M≥2.5 级地震目录资料完整,定位误差小于 10km。

研究区的东部及南部部分区域涉及到安徽西南及江西西北部地区。其 中,安徽全省县级单位地震监测台站已实现全覆盖,基本具备对全省1.0级 以上地震、重点地区0级以上地震的监控能力;江西省共建成测震台站28 个、强震台站6个、前兆台站8个、陆态网台站2个、流动台站7个,形 成了多学科、多测项的综合性地震监测网络并常年保持稳定运行。全省地 震监测能力下限可达到M2.5级,南昌市等局部重点地区可达到M1.5级。

1.1.4 区域破坏性地震目录

根据上述资料,编制了区域范围内破坏性地震(M≥4.7)(公元前143年至公元2019年12月)目录(表1.1-1)和区域各震级档次的破坏性地震频次分布一览表(表1.1-2)。

由表 1.1-1 中可以看出, 区域最早的地震记载是公元 319 年 1 月江西南 昌西北的 5¹/₂级地震;最近一次破坏性(M≥4.7)地震为 2019 年 12 月 16 日湖北省孝感市应城市的 M4.9 级地震;最大地震为 1917 年 1 月 24 日安徽 霍山 6¼级地震,震中烈度 VIII。

由表 1.1-2 可知,区域内共记到 M≥4.7 级地震 55 次,其中 6.0~6.9 级 地震 3 次; 5.0~5.9 级地震 32 次; 4.7~4.9 级地震 20 次。总体上,区域范 围内有地震记载以来发生过 M≥6 级的强震 3 次。

=	1	1	1
<u> </u>		- 1	_ 1
1 X			

区域内破坏性地震目录(M≥4.7)

序	地震日期		地震窟	震中位置	雨加	震源深	地震震	精
号	年.月.日	北纬(°)	东经(°)	参考地点	辰纵	度(km)	中烈度	度
1	319.1	29.0	115.0	江西南昌西北	51/2	*		4
2	1334.1	28.8	117.1	江西乐平南	43/4	*		3
3	1336.1.12	31.2	116.1	安徽霍山西南	51⁄4	*		*
4	1336.3.1	30.2	116.1	安徽宿松、黄梅交界	43/4	*		*
5	1407	31.2	112.6	湖北钟祥	51/2	*	VII	2
6	1425.3.7	31.7	116.5	安徽六安	53/4	*		*
7	1469.11.4	31.2	112.6	湖北钟祥	51/2	*		*
8	1470.1.8	30.1	113.2	湖北武汉西南	5	*		*
9	1497.6	30.5	116.5	安徽潜山西南	43/4	*		3
10	1535.1	30.7	117.5	安徽贵池	43/4	*	VI	3
11	1561.4	30.5	117.4	安徽贵池西南	43/4	*		3
12	1575.3.26	29.0	114.0	江西修水西	51/2	*		4
13	1584.3.17	30.8	115.7	湖北英山	51/2	*		*
14	1603.5.30	31.2	112.6	湖北钟祥	51/2	*		*
15	1605	30.5	114.3	湖北武昌	43/4	*		*
16	1605.6.8	30.8	113.0	湖北钟祥东南	5	*		3
17	1620.3.5	31.1	112.7	湖北钟祥东南	5	*		3
18	1629.4	30.3	115.1	湖北黄冈蕲州间	43/4	*	VI	3
19	1630.6	30.7	113.5	湖北天门汉川一带	5	*	VI	3
20	1630.10.14	30.2	113.2	湖北沔阳沔城	5	*		*
21	1633.4.6	30.6	114.9	湖北黄冈	43/4	*		3

序	地震日期		地震家	震中位置	雨加	震源深	地震震	精
号	年.月.日	北纬(°)	东经(°)	参考地点	辰级	度(km)	中烈度	度
22	1634.3.26	30.5	114.9	湖北黄冈	5	*		*
23	1634.3.30	30.7	115.4	湖北罗田	51/2	*	VII	2
24	1635.2.17	30.5	116.5	安徽潜山西南	43/4	*		3
25	1639.4.15	28.3	112.6	湖南长沙西北	43/4	*		3
26	1640.9	30.5	114.9	湖北黄冈	5	*	VI	2
27	1652.2.10	31.4	116.3	安徽霍山	51/2	*		3
28	1652.3.23	31.5	116.5	安徽霍山东北	6	*	≥VII	2
29	1654.2.17	30.9	117.5	安徽庐江东南	51⁄4	*		3
30	1673.3.29	31.8	117.3	安徽合肥	5	*	VI	3
31	1756.12.7	29.1	116.9	江西波阳东北	51/2	*		4
32	1770.1.16	31.4	116.3	安徽霍山	53/4	*		4
33	1863.8.20	29.1	114.1	江西修水、湖北通城间	5	*	VI	3
34	1888.3.29	28.6	114.5	江西宜丰北	51⁄4	*		3
35	1897.1.5	29.9	115.2	湖北阳新	5	*	VI	2
36	1911.2.6	29.7	116.0	江西九江	5	*	VI	3
37	1913.2.7	31.2	115.0	湖北麻城	5	*	VI	*
38	1917.1.24	31.3	116.2	安徽霍山	6¼	*	VIII	*
39	1917.2.22	31.3	116.2	安徽霍山	53/4	*		*
40	1918.6	30.5	117.4	安徽池州市贵池区	43/4	*		*
41	1925.2.27	31.7	115.5	河南商城	5	*	VI	*
42	1932.4.6	31.4	115.1	湖北麻城北	6	13		*
43	1934.3.18	31.3	116.2	安徽霍山	5	*		*
44	1954.2.8	29.7	113.9	湖北蒲圻	43/4	*	VI	*
45	1954.6.17	31.6	116.6	安徽合肥、六安一带	5¼	*	VI	3
46	1959.7.3	31.8	115.3	河南潢川附近	5	*	VI -	3
47	1973.3.11	31.4	116.2	安徽六安市霍山县	4.8	7		
48	1973.3.11	31.4	116.2	安徽六安市霍山县	4.9	6		
49	1995.4.15	29.6	115.6	江西九江市瑞昌市	4.9	*		
50	2005.11.26	29.7	115.7	江西九江、瑞昌间	5.7	15		
51	2005.11.26	29.7	115.7	江西九江市柴桑区	4.8	9		
52	2006.10.27	31.5	113.1	湖北随州市随县	4.7	9		
53	2011.1.19	30.7	117.1	安徽安庆	4.8	6		
54	2011.9.10	29.7	115.4	江西瑞昌	4.9	13		
55	2019.12.26	30.87	113.4	湖北孝感应城	4.9	10	VI	3

表中"*"号表示缺乏资料。

表 1.1-2

区域各震级档次的破坏性地震频次分布一览表

资料时段	319年1月~2019年12月						
震级分档	4.7 ~ 4.9	5.0 ~ 5.9	6.0 ~ 6.9	7.0 以上			
地震频次	20	32	3	0			

1.1.5 区域性地震台网地震目录

表 1.1-3 为区域性地震台网地震目录 (1970 年 - 2019 年 12 月, M≥

4.0),	表 1.1-4	为区域性地	震台网记录的	勺各震级档次	地震数统计
-------	---------	-------	--------	--------	-------

表 1.1-3 区域性地震台网地震记录(1970 年-2019 年 12 月, M≥4.0)

_	地震日期		地震震	震源	霍级	
序号	年.月.日	北纬 (°)	东经 (°)	参考地点	深度 (km)	M
1	1972.9.12	29.9	115.4	湖北黄石市阳新县	/	4.0
2	1973.3.11	31.4	116.2	安徽六安市霍山县	7	4.3
3	1973.3.11	31.4	116.2	安徽六安市霍山县	6	4.5
4	1973.3.12	31.4	116.2	安徽六安市霍山县	7	4.0
5	1995.4.15	29.6	115.6	江西九江市瑞昌市	0	4.5
6	2005.11.26	29.7	115.7	江西九江市瑞昌市	15	5.7
7	2005.11.26	29.7	115.7	江西九江市柴桑区	9	4.1
8	2005.11.26	29.7	115.7	江西九江市柴桑区	9	4.8
9	2006.10.27	31.48	113.08	湖北随州	9	4.2
10	2011.1.19	30.67	117.1	安徽安庆	6	4.3
11	2011.9.10	29.7	115.4	湖北黄石市阳新县	13	4.5
12	2014.4.20	31.36	116.12	安徽霍山	10	4.4
13	2019.12.26	30.9	113.4	湖北孝感市应城市	10	4.9

由表 1.1-3 和表 1.1-4 可见, 1970 年以来区域 M≥2.0 级地震共 1888 次, 其中 M2.0~2.9 级地震 1658 次, M3.0~3.9 级地震 217 次, M4.0~4.9 级地 震 12 次, M5.0~5.9 级地震 1 次。

表 1.1-4 区域性地震台网记录的各震级档次地震数统计(M≥2.0)

资料时段	1970年~2019年12月						
震级分档	2.0 ~ 2.9	3.0 ~ 3.9	4.0 ~ 4.9	5.0 ~ 5.9			
地震频次	1658	217	12	1			

从表 1.1-3 可以看出,区域内现代地震 M≥4.0 级最早的地震记载是 1972 年 9 月 12 日湖北黄石阳新 M4.0 级地震;最近的一次地震为 2019 年 12 月 26 日湖北应城 M4.9 级地震,最大地震为 2005 年 11 月 26 日江 西九江、瑞昌间 M5.7 级地震。

1.2 区域地震分布特征

1.2.1 区域地震震中分布图和空间分布特征

根据区域破坏性地震目录(M≥4.7)和区域性地震台网地震记录(M ≥2.0),编制了区域破坏性地震震中分布图(图 1.2-1)和区域性地震台网 地震记录震中分布图(图 1.2-2),用来展示区域地震活动的空间分布特征。 本区域内破坏性地震主要在六安霍山、黄冈-黄石、九江等地分布,涉及 到的地质单元主要有桐柏大别隆起区、江汉-洞庭沉降区和幕阜山隆起区。 其它地区有地震零星散布。与图 1.2-1 对比可以看出,图 1.2-2 中的区域现 代地震分布与破坏性地震空间分布总体特征基本一致,但又稍有差异,地 震在六安霍山、九江瑞昌、咸宁、嘉鱼等地相对集中分布,其它地区零星 散布。

1.2.2 地震震源深度分布特征

区域内共记载破坏性地震 56 次, 仅有 10 次震源深度资料。本报告对 区域内所测定的 1970 年以来 M≥2.0 级地震的震源深度特征进行了分析, 表 1.2-1 为震源深度统计表,图 1.2-3 区域地震震源深度剖面图。经统计得 到平均震源深度为 7.62km,其中约 86%的地震深度在 10km 之内,表明本 区地震主要集中在上地壳内。1970 年以来,M≥4.0 级地震平均震源深度为 9.25km。

表 1.2-1 区域性地震台网记录的地震震源深度统计表(M≥2.0)

深度范围	1~5	6~10	11~15	16~20	> 20
地震次数	176	449	67	14	12
总占比(%)	20.72	63.13	10.62	3.70	1.91

1.3 区域地震统计区划分

按《中国地震动参数区划图》(GB18306-2015)的地震区带划分方案, 地震区、带的划分除考虑地震地质和地震活动等多方面一致性因素外,还 强调了它们作为地震活动性参数确定的统计单元的特点。通过参数确定和 趋势分析中的应用实践以及参考有关专家的意见,进行了进一步修改和完 善,最终提出了本次地震区、带划分图。

区域范围包括湖北中东部以及江西、安徽部分地区。按《中国地震动参数区划图》(GB18306-2015)的地震区带划分方案,本区域主要涉及到郯 庐地震统计区、长江中游地震统计区、华北平原地震统计区及长江下游-黄海地震统计区(图 1.3-1)。

1.3.1 郑庐地震统计区

郑庐地震统计区南起湖北广济,经安徽、江苏、山东、渤海,北达辽 宁沈阳附近,总体呈北东东向展布(图 1.3-2)。

该地震带包括了以其规模巨大而著称的北北东至南北走向的郯庐断裂 带大部及其相关的北西、北东向活动断裂带。郯庐断裂带位于华北克拉通 东部,自南向北经过合肥盆地东部、苏鲁造山带西缘,过渤海后由燕山构 造带东缘向北进入东北地区。郯庐断裂带是中国东部的一条北北东向巨型 断裂带,它南起长江北岸的湖北广济,经安徽太湖、潜山、庐江、肥东, 江苏的泗洪、宿迁,山东郯城、潍坊而穿越渤海,过沈阳后分为西支的依 兰-伊通断裂带和东支的密山-抚顺断裂带,总体呈北北东向延伸,中国 境内长达 2400km,宽 20-40km,呈缓"S"形。

鄰庐地震带历史上以及史前曾发生过一系列大震,M≥4.7级地震共计 137次,M5.0~5.9级地震 70次,M6~6.9级6次,M7-7.9级6次,M8½级 1次。最大为1668年山东郯城 M8½级大地震,现代在下辽河、渤海段发生 1969年渤海 M7.4级地震和1975年辽宁海城 M7.3级地震等一系列强震。 郯庐地震带地震活动鲁西、渤海段最强,北段辽东次之。

郯庐地震带南段皖西北地震构造区具有中等地震活动水平,绝大多数 地震分布在郯庐断裂带主干断裂西侧东大别断块、淮南断块周缘的淮南、 六安、霍山、罗田、麻城一带。有地震记载以来,共发生 M≥4¾级地震 30 次、M5~5.9级地震 18次、M6-6.9级地震 4次,最大地震为 1831 年 9 月安徽风台 M6¼级地震和 1917 年 1 月安徽霍山 M6¼级地震,地震分布多与区内早 - 中更新世活动的北东 - 北北东、北西 - 北西西向主要断裂构造有关, 尤其是东大别断块内晚更新世活动的霍山 - 罗田中强地震断裂带。

1.3.2 长江中游地震统计区

长江中游地震统计区(长江中游地震带),为浅源中等地震活动构造带, 西起四川东部、贵州、重庆,经过湖北、湖南,东至江西等省市的广大地 震,其范围大部为扬子准地台分布区域(图1.3-3)。

长江中游地震带内与地震活动密切相关的断裂构造带有:北西向汉中-安康-房县断裂构造带、北北西向鄂中盆岭断裂构造带、北北东向重庆

华蓥山断裂构造带、北北东向巴东一恩施-黔江断裂构造带、北北东向常 德太阳山断裂构造带、北东向九江、瑞昌-靖安、修水断裂构造带等,它 们多属早-中更新世地震构造,少数为晚更新世活动构造,与断块边界差 异运动、大型隆起轴部纵张活动以及隆起与沉降间拗断作用等相适配。

该地震带有地震记载以来共发生 M6-6.9 级地震 3 次。3 次 M≥6 级地 震分别是 788 年 3 月湖北房县西北 M6½级地震、1631 年 8 月湖南常德 M6¾ 级地震和 1856 年 6 月湖北咸丰、四川黔江间 M6¼级地震。湖南常德 M6¾ 级地震为该地震带的最大地震。这3次 M6级地震都发生在地震带的中北部, 同时地震相对集中于南秦岭、江汉 - 洞庭盆地、鄱阳湖盆地周邻和四川盆 地西南部,表明该地震带中北部地区活动水平相对较高,其它广大地域 5 级左右地震呈零星弥散分布。

依据长江中游地震统计区内地震活动的非均匀性和相关地震构造的活 动强弱,将长江中游地震统计区划分为如下地震构造区,即南秦岭地震构 造区、华南北部地震构造区、华南中部地震构造区鄂渝地震构造区和川中 地震构造区。其划分总体显示由北部准稳定构造环境向华南内部弱震稳定 地带过渡的特征。

1.3.3 长江下游-南黄海地震统计区

长江下游-南黄海地震统计区(地震带)包括长江下游及南黄海海域 (图1.3-4)。在大地构造上,该区主要位于扬子准地台内,新生代以来以沉 降为主,呈现较强的伸展运动特征。除长江下游下扬子盆岭带仍继承早新 生代盆岭特征外,其余苏北拗陷、南黄海拗陷晚新生代以来强烈沉降,并 伴随次级断陷边界的断层活动。带内主要地震构造为早-中更新世断裂, 如东西向幕阜山一焦山断裂等;少数为晚更新世活动断裂,如东西向拼茶 河断裂、北北东向茅山东断裂。

23

本带为中强地震区,自有地震记载以来,共记录有 M≥4.7 级地震 97 次,其中 M7 级地震 1 次、M6~6.9 级地震 19 次、M5~5.9 级地震 42 次。具 有低频度中等地震活动,如 1624 年扬州 M6 级地震和 1979 年溧阳 M6 级地 震。苏北拗陷继承早新生代裂谷型盆地的伸展特征,形成宽广的拗陷盆地, 晚新生代最大堆积厚度达 1900m,第四系可达 500m。南黄海拗陷内次级凸 起和凹陷走向北东东,其与苏北拗陷毗邻的南部凹陷区中强震较多,最大 地震为 1846 年 7 级地震,最近一次是 1984 年 M6.2 级地震。长江下游 - 南 黄海地震统计区以陆海分界划分东西两地震构造区,东部南黄海地震构造 区地震活动明显强于苏沪杭区。

1.3.4 华北平原地震统计区

华北平原地震统计区即华北平原地震带,呈北北东向展布,为浅源强 烈地震活动构造带,主要涉及河南、河北、京津唐地区(图1.3-5)。本带现 代发生过 1966 年邢台 M7.2 级地震和 1976 年唐山 M7.8 级地震等一系列强 震,最大一次地震为1679年9月2日河北三河平谷M8级地震,地震活动 水平较高, 共发生 M7.0~8.0 级地震 6 次、M6~6.9 级地震 30 次。华北平原 地震带主要控制构造为晚新生代继承性强烈活动的北北东向华北平原断陷 沉降带,该带形成于早新生代,为一系列裂陷作用下的盆岭伸展构造,其 北部、中部晚新生代沉积厚度 1000~2200m, 南部约 200~600m。其北部、 中部发育一系列雁列展布的北北东向强震断裂构造和与其共轭的北西向横 向剪切强震断裂构造,如北北东向太行山山前断裂构造系统与北西向南口 至宁河断裂构造系统。该带北部、中部为大震活动区,南部为中等地震活 动区,呈现北强南弱特征。根据活动构造展布、地震活动水平等,本带可 分为三部分:1)北部京津唐地震构造区,强震较频繁,如1679年三河平 谷 M8 级地震、1976 年唐山 M7.8 级地震和滦县 M7.1 级地震, M5-6.9 级地 震呈北西向与北东向共轭密集分布,区内发育众多全新世、晚更新世活动 断裂。其涉及的全新世强烈活动的大震断裂构造分别是北北东新垫断裂、 唐山断裂和滦县断裂等;2)中段华北中部地震构造区大震强度稍低,有1830 年磁县 M7½级地震、1937 年菏泽 M7 级地震,和 1966 年邢台 M7.2、M6.8、 M6.7 级强震群, M5~6.9 级地震亦较多。区内发育较多的晚更新世活动断裂 和少量全新世活动断裂,其相应的全新世大震活动构造分别是北西西向岔 口 - 南山村断裂、北北东向聊城 - 兰考断裂和束鹿凹陷下隐伏的牛家桥百 尺口深断裂等;3)华北南部地震构造区(新乡-商丘一线以南)为河淮盆 地区,包括河南大部和湖北、陕西部分地区,中等地震活动水平,有地震 记载以来共发生 M5~5.9 级地震 13 次、M6~6.9 级地震 4 次。最大地震为公 元 46 年 10 月河南南阳 M6½级地震,其次为 1524 年、1820 年许昌附近 2 次 M6 级地震,构造展布方向以北西西为主,即受伏牛山 – 桐柏山北西向断 裂带和许昌 – 淮阳北西西向断陷带等控制,主要地震构造多为早第四纪断 裂,少数为晚更新世活动断裂,如北西向新乡 – 商丘断裂带、许昌 – 太康 断裂带、丹凤 – 商南断裂等。

图 1.3-5 华北平原地震统计区震中分布图

1.4 各地震统计区地震活动时间分布特征及未来趋势

本报告研究区域主要涉及到的长江中游地震统计区、郯庐地震统计区 和长江下游-南黄海地震统计区的地震活动特征。震级-时间分布(M-T 图)是描写地震活动时间进程的最简单直观的方法,根据 M-T 图上地震的 疏密、大小,来划分地震活动的相对平静期和相对活跃期。利用应变能积 累和释放曲线可以描述地震活动随时间进程的演化过程。为了研究区域涉 及到的长江中游地震统计区和郯庐地震统计区的地震活动特征,本文利用 记录到的 1400 年以来的 M≥4.7 级地震进行震级一时间分布和应变释放曲 线分析。

1.4.1 长江中游地震统计区

长江中游地震统计区为中强地震活动区,地震记载历史较长,最早一次为公元前143年6月7日竹山5级地震。图1.4-1给出长江中游地震统计 区公元前200年以来M≥4.7地震的M-T图和应变释放曲线。图1.4-1显示, 该区1300年之前地震资料遗失较多,重要的地震事件有788年房县西北 M6½级地震,图1.4-2给出长江中游地震统计区公元1300年以来 M≥4.7 地震的M-T图和应变释放曲线。从图上看,该区1300年以来经历有两个地 震活跃期(1467-1640年,1813-?年)。

图 1.4-1 公元前 200 年以来长江中游地震统计区 M-T 及应变释放曲线图

图 1.4-2 公元 1300 年以来长江中游地震统计区 M-T 及应变释放曲线图

第一地震活跃期 1467~1640 年,江汉洞庭盆地为主要能量释放区,最 大地震为 1631 年常德 M6¾级地震,大致经历时段为 173 年。第二活跃期自 1813 年起至今, 已历时 206 年, 最大地震为 1856 年咸丰大路坝 M614级地 震,尚发生十余次 M51/2~53/4级地震,如 1819 年贵定 M53/4级地震和 2005 年 九江 - 瑞昌 M5.7 级地震。两地震活跃期之间为相对平缓期,历时 173 年, 仅十余次 M4¾~5½级地震。由于第二地震活跃期自 1844 年以来方显得数据 完整,可以划分出五个地震活动子幕,每个子幕大约 25~30 年,前二子幕 之间间歇△T约20年,后三个子幕间歇△T约10年。除第一个子幕为1856 年 M6¼级地震而显示大释放外,其余四个子幕均维持 M5½~5¾级地震为主 要事件的次级能量释放特征,如第五子幕曾发生 2005 年九江-瑞昌 M5.7 级地震和 2015 年贵州剑河 M5.5 级地震,同样显示了较为活跃的状态。因 此,以保守估计,未来百年仍可能维持1844年以来的活跃状态,同时也考 虑到 1631 年常德 M6¾级地震事件与 1856 年咸丰 M6¼级地震事件相隔 225 年,而自 1856 年以来的离逝时间为 163 年,故带内 M6~6½级级地震重复 概率增大。此外,公元 788 年房县西北 M6½级地震已离逝 1241 年,南秦岭 地震构造区的较大中强震的复发在龙门山地震带强烈活动后变得严峻。据

上述讨论,为保守起见,未来百年长江中游地震统计区地震活动性参数宜 以活跃期进行估计。

1.4.2 郑庐地震统计区

该区最早的地震记载为公元前 70 年 6 月 1 日安丘 7 级地震。图 1.4-3 和图 1.4-4 分别给出公元前 100 年和 1400 年以来郯庐地震统计区 M≥4.7 级 地震的 M-T 图与应变释放曲线。由图 1.4-3 可以看出 1400 年之前,仅记有 13 次地震,地震缺失较多,1400 年后地震记录较多,但由于明末清初和清 晚期社会动荡影响地震史料记载,以及 M5 级左右地震易遗漏失记,尤其是 像渤海内部,因此,只有 1900 年以后才基本完整。从图 1.4-4 上看,1400 年以来该区经历有两个地震活跃期(1477~1687,1829~?)。

图 1.4-3 公元前 100 年以来郯庐地震统计区 M-T 及应变释放曲线图

第一活跃期 1477~1687 年,最大地震为 1668 年山东郯城 M8½级特大地震,2次 M7 级地震分别为渤海内 1548 年、1597 年地震事件,尚有4次 M6 级地震和近20余次5 级左右地震,如1652 年安徽霍山 M6 级地震和1568 年渤海 M6 级地震等。它们鲜有与 1668 年郯城 8½级地震所处鲁西地震构造
区、沂沭断裂段相匹配的分布,而是大致位于郯庐地震带南北两端区,在 时空统计上构成了相关性,即渤海二次7级地震分别距1668年8级地震的 时距为120年和71年,并且1652年皖西北霍山M6级地震仅相距16年。 它们具有历史"前震"序列性质。

第一活跃期结束后,1688年至1828年本带处于相当平静的状态,仅有 6次较小中等地震,即约142年的地震平静期。

图 1.4-4 公元 1400 年以来郯庐地震统计区 M-T 及应变释放曲线图

第二活跃期大致为 1829 年至今,初始即有 129 年山东临朐 M6¼级地震 和 1831 年安徽凤台地震,但其前 30 年,后 16 年均无 M5 级左右地震伴随, 可能缺记遗漏。第二活跃期大致可划分为三个地震活动子幕: 第①子幕为 1829~1888 年,约 60 年,十来次中等地震活动后 1888 年发生渤海 M7½级 地震,但缺相关余震记载。第②子幕为 1906~1954 年,约 48 年,具有较强 中等地震活动,曾发生 6 次 M6~6¾级地震,即 1917 年安徽霍山 M6¼级级 地震和 1922 年渤海 M6½级地震、1944 年丹东 M6¾级地震和 1948 年威海 M6 地震等。第③子幕为 1967 年至今,先后在渤海、辽宁海城发生 1969 年 M7.4 地震、1975 年 M7.3 级地震和近十次中等地震。

就郯庐地震带第二活跃期至今的地震构造图象分析,它与第一活跃期 1668年郯城M8½级地震前的地震构造分布特征较为类似。首先,北段辽东、 渤海两地震构造区M6~7.5级地震相继连发,南段皖西北地震构造区中等地 震活跃,而鲁西地震构造区沂沭断裂段鲜有较小中等地震。其次,华北地 震区华北平原地震带、郯庐带、长江下游南黄海地震带在第二地震活跃期 共同塑造了华北地震区内的"地震环",郯庐断裂带作为曾经的特大地震构 造位居其中间,存在大震从渤海向"缺震"的鲁西迁移的可能。另外,2005 年九江 - 瑞昌 M5.7 地震和 2011 年安庆 M4.8 级地震前,郯庐带曾二度存在 M4.0 级地震的前兆条带。

然而,另一方面沂段史前地震考查,揭示大震重复时距约2500-3000 年。因此,从保守角度权衡,在顾及到郯庐带中段并不能排除 M7~7½级 地震背景条件下,未来百年,郯庐地震统计区地震活动参数宜以活跃期 估计。

1.4.3 长江下游 - 南黄海地震统计区

该区最早的地震记载为公元499年8月5日南京M4¾级地震。图1.4-5、 图 1.4-6 给出长江下游-南黄海地震统计区 400 年和 1400 年以来 M≥4.7 地 震的 M-T 图和应变释放曲线。由图 1.4-5 可以看出公元 148 年之前,仅记 有 4 次地震,地震缺失较多,1485 年后地震记录较多,但由于地震主要分 布于南黄海中,故 1900 年以来地震才基本完整。从图 1.4-6 分析,1485 年 以来该区经历有两个地震活跃期。第一活跃期为 1491~1764 年,约 273 年。 第一活跃期地震明显有遗漏,但亦显示了中强地震活动水平,即 1505 年南 黄海 M6¾级地震、1624 年扬州 M6 级地震和 1764 年南黄海 M6 级地震等, 其后"缺震"平静持续了 76 年。第二活跃期自 1840 年以来至今,地震活 动经历了三个活跃子幕,每幕经历约 40 余年,幕间平静期△T 约 22~25 年。 第一子幕最大地震为 1846 年南黄海 M7 级地震,并有 4 次 M6-6¾级地震。 第二子幕最大地震为 1910 年南黄海 M6¾级地震,尚有 3 次 M6¼~6½级地 震。第三子幕以 1973 年起至今已有 46 年,共发生 3 次 M6~6.2 级中强震和 10 余次 M4.7~5.5 级中等地震,最大地震为 1984 年南黄海长江口外 M6.2 级地震。因此,本文推测本幕已结束,未来百年将经历两个子幕,并维持 中强地震活动水平。保守估计,未来百年长江下游一南黄海地震活动性参 数以活跃期水平估计为宜。

图 1.4-6 公元 1400 年以来长江下游-南黄海地震统计区 M-T 及应变释放曲线图

1.4.4 区域破坏性地震活动时间分布特征

目标区区域主要涉及郯庐地震统计区南段皖西北地震构造区和长江中 游地震统计区华南北部地震构造区,具有中强地震活动水平。自1400年以 来,区域范围内在1652年及1917年前后均有一次大的能量释放,主要能 量释放为郯庐地震带南端皖西北地震构造区东大别断块地震构造单元,即 1652年霍山M6级地震,1917年霍山M6¼级地震和1932年麻城M6级地 震。其次地震能量释放为华南北部地震构造区幕阜地震构造单元,先后发 生近1次M4.7~5.7级地震。

图 1.4-7 公元 1400 年以来区域破坏性地震 M-T 及应变释放曲线图

本区域第一活跃期以 1652 年霍山 M6 级地震为代表,它与邻区长江中游地震带江汉-洞庭地震构造单元中强地震活动密切关联,存在自南西向北东迁移发展的趋向。第二地震活跃期第一活跃子幕为 1897~1954 年(图 1.4-7)。自 1897 年阳新 M5 级地震之后,区域与近邻地区于发生 1917 年安徽霍山 M6¼级地震、132 年湖北麻城 M6 级地震,M5 级左右中等地震约 8

次。其后,1955~1995年区域弱震活动持续了近40年。自1995年九江-瑞 昌 M4.5 级地震以来,东大别断块周邻地带中等地震较为活跃,发生 M4.3~5.7级地震7次,其中三次较大的地震即为2005年九江-瑞昌M5.7、 4.8级地震、2011年安庆M4.8级地震和阳新M4.6级地震显示了本区域及 近邻地区第二活跃期第二活跃子幕的到来。值得指出,安徽省霍山2次 M6~64级地震的原震源区,自1970年有台网记录以来,维持着北东向为主, 北西向为辅的微震-小震条带。它不仅体现了原震源体的线性尺度(记忆 效应),也充分显示了与区域地震相关联的"灵敏窗"效应,同时还展现一 定强度的地震活动度,于1973年发生M4.3、4.5、4.0级震群和2014年M4.3 级地震。

综合分析表明,未来百年不排除在东大别断块及其周邻地带发生 M6 级地震的可能性。这与郯庐地震带,长江中游地震带未来百年以活跃期保 守估计相适宜。

1.5 区域震源机制解及现代构造应力场

1.5.1 震源机制解

利用震源机制、原地应力测量、地壳形变和地震裂缝等资料可以获得 现代应力场信息。由中国科学技术部基础性工作专项资助的《中国大陆地 壳应力环境基础数据库》通过收集我国大陆及邻区6类主要地壳应力数据, 包含水压致裂原地应力测量数据、应力解除原地应力测量数据、震源机制 解资料、钻孔崩落资料、断层滑动反演资料和连续应力应变观测资料,编 制了"中国及邻区现代构造应力场图"(谢富仁等,2007)。据研究,区域 现代应力场的基本格局和新近纪以来的构造应力场基本一致,具有明显的 继承性。

本区域内局部地区应力场存在较大差异,主压应力轴方向既有北西西 -近东西向的,也有北北西-近南北向的,差异的主要因素可能是构造差 异,反映局部应力场的影响。

区域内缺乏 M≥4.7 级地震的震源机制解资料,仅记录 2 次。现代地震 以小震、微震为主,表 1.5-1 为区域内收集到的地震震源机制解,图 1.5-1 为区域震源机制解图。对收集到的震源机制解 P 轴和 T 轴进行统计,进而 可获得区域震源机制解主压应力 P 轴方位角和仰角的玫瑰花图(图 1.5-2) 和区域震源机制解主张应力 T 轴方位角和仰角的玫瑰花统计图(图 1.5-3)。

表 1.5-1

区域地震震源机制解

应	发震日期		震中位	置	震	节面	λA	节面B		P 轴		T 轴	
万 子 号	年月日	纬度	经度	参考	级	走向	倾	走向	倾	方	仰	方	仰
	1/14	(°)	(°)	地名	Μ	入時	角	入時	角	位	角	位	角
1	19720912	29.9	115.4	湖北广济	4	195	24	47	69	127	25	338	65
2	19721014	29.4	115.4	江西柘林	3.2	233	49.7	323	90	90	27	196	27
3	19721016	29.3	115.4	江西柘林	3	232.5	40.5	323.2	89.4	86	32	200	33
4	19730311	31.4	116.2	安徽霍山	4.5	121.8	54.7	215.4	84.9	85	28	343	20
5	19740422	31.4	117	湖南溧阳	5.5	27	60	276	60	60	45	151	0
6	19770803	31.5	114.02	湖北大悟	3	82	41	251	49	113	83	346	4
7	19780408	29.1	115.5	江西柘林	2.8	18	85	110	75	63	5	333	17
8	19800123	31.27	113.87	湖北安陆	3.1	346	54	90	71	314	40	214	11
9	19800613	31.82	114.98	河南光山	3.3	126	45	22.5	77	81	20	333	41
10	19810426	31.85	115.46	河南商城	2.6	60	37.4	201.2	59.3	307	11	68	67
11	19810510	31.38	116.17	安徽霍山	2.8	67	60	320	60	103	44	193	1
12	19811219	30.88	113.75	湖北孝感	2.1	282.8	53.9	182.2	75.9	136	36	237	14
13	19820927	31.6	116.53	安徽六安	3.8	207	50	101.5	72.4	159	14	56	42
14	19840125	31.99	116.27	安徽霍丘	3	215	55.7	321	68	88	10	178	10
15	19840527	31.6	116.55	安徽六安	2.6	212.2	79	121.8	88	76	9	168	6
16	19850510	31.6	116.56	安徽六安	3.5	334.6	69.4	240.6	79.7	289	7	196	22
17	19850906	30.82	116	湖北英山	3	181.7	40	20.5	51.6	123	39	24	11
18	19860913	31.49	116.42	安徽霍山	2.3	11.6	64.8	114.4	64.8	243	0	333	37
19	19871028	31.63	116.33	安徽六安	3.2	142.5	68.7	236.3	80.4	101	22	8	8
20	19881204	31.52	113.82	湖北广水	3.1	203	22.5	308.7	83.7	56	57	319	66
21	19890129	29.1	114	江西修水	3.4	260	63	80	27	350	18	80	90
22	19930725	29.48	114.37	湖北咸宁	3.4	93	34	217	65	328	28	117	74
23	19930730	29.82	114.25	湖北咸宁	3.6	335	9	75	89	337	45	173	42
24	19950415	29.6	115.57	江西瑞昌	4.5	37	68	302	79	348	66	81	83
25	19960928	31.67	113.53	湖北随州	2.4	240	60	60	30	150	15	330	75
26	19961010	31.42	116.77	安徽舒城	2.5	57	70	307	45	284	49	177	15
27	19970411	31.22	114.02	湖北孝昌	2.8	15	48	122	71	66	45	340	76
28	19980524	31.53	116.25	安徽六安	3.2	41	60	296	65	257	41	350	4
29	19981027	31.23	114	湖北孝感	2.8	280	10	100	80	190	35	10	55
30	19990614	30.67	116.7	安徽怀宁	2.6	50	85	312	35	288	40	168	32
31	20000128	32	113.68	湖北广水	2.3	270	10	90	80	180	35	0	55
32	20021022	29.9	115.9	湖北黄梅	2.8	80	78	328	29	231	50	101	28
33	20021022	29.98	115.87	湖北黄梅	2.4	265	48	6	78	39	19	145	38
34	20021121	29.57	114.42	湖北通山	2.4	311	85	45	52	274	22	171	30
35	20051126	29.7	115.7	江西瑞昌	5.7	237	76	334	64	276	83	181	56
36	20051126	29.7	115.7	江西瑞昌	4.1	15	87	273	13	272	46	117	41
37	20051126	29.7	115.7	江西瑞昌	4.8	54	71	317	71	282	90	12	63
38	20110910	29.7	115.4	江西瑞昌- 湖北阳新	4.6	30	86	299	79	253	7	160	23
39	20140420	31.37	116.12	安徽霍山	4.3	135	70	230	60	267	5	358	4

图 1.5-3 主张应力 T 轴方位角及仰角玫瑰花统计图解

由图 1.5-2 和图 1.5-3 可以看出,区域震源机制解主压应力 P 轴的方位 角优势方位为近 E-W 向,仰角多小于 30°;主张应力 T 轴方位角优势方位 主要为 NNW-SSE 向,仰角多小于 45°。

1.5.2 地震平均应力场

震源应力场是受构造应力场控制的,单个震源应力场往往不能完全反 映出构造应力场特征,所以要对大量的震源应力场进行分析统计才可总结 出现代构造应力场的基本特征。由于大地震的发生与构造应力场关系更为 密切,并且中小地震除受区域应力场控制外,往往还与局部应力场有关, 随机波动性相对较大,因此一般采用大地震来研究构造应力场。但是在研 究过程中发现,大地震的数目较少,利用它会受到一定的限制;而中小地 震数目较多,因此,只要在一定范围内有足够数量的分布均匀的中小地震, 其震源机制解的统计结果也能反映区域现代构造应力场(魏光兴等,1982)。

谢富仁(2003)根据力源特征和应力结构性状等对中国现代构造应力 场进行了分区,依据中国及邻区 1908~2001年间 2500多个震源机制解数据 资料分析了各应力场分区的现代构造应力场方向特征和构造应力状态。整 体而言,中国现代构造应力场中的最小应力轴(T轴)和最大主应力轴(P 轴)均近于水平,中间应力轴则近直立。其中,华北-东北区 P 轴平均方 位以 NEE-SWW 或近 E-W 向为主,华南应力区以走滑型应力数据为主,P 轴优势方位为 NW 至 NWW 向。本项目场区所处构造位置位于华南与华北 应力区交界部位,所处构造环境复杂,兼具二者构造区的应力特点。

李蓉川等(1984)利用湖北及邻区 1969~1981 的地震资料,分别求解 了三峡、麻城、蒲圻和丹江四个地区的小震综合断面解。分析结果表明三 个地区构造应力场出现不一致的情况,其中鄂东地区(襄樊-广济断裂以 北至安徽西南霍山一带)主压应力方向为 NEE-SWW 向,鄂东南地区(襄 樊-广济断裂以南包含幕阜山在内的地区)主压应力为 NWW-SEE 向,主 张应力呈 NNE-SSW 向。这与李细光等(2004)在对武汉-信阳地区 1972-2001 年近 50 个震源机制解的分析结果一致,认为鄂东南-湖南北部地 区的 P 轴平均优选方位为 SE127°,拉张区多呈北东向分布。

汪素云等(1985)通过综合 1973~1982 年间东北、华中和华南的 1211 次小震 P 波初动资料,对中国东部大陆的地震构造应力场进行了详细分区 描述。高锡铭等(1994)通过分析 1974 年以来长江三峡及邻区的 P 波初动

资料,得到了区域构造应力场和震源错动类型。本报告综合上述文献中鄂 东、东南及安徽南部、江西地区的平均应力场数据,结合场址区附近的 P、 T轴统计数据,进行综合分析。

可以看出,湖北中东部、东部地区主压应力轴方向为北东 64~77°,倾 角约 35~66°,主张应力轴方向主要为北西-南东向,错动方式以正断层为 主,呈现伸展运动特征(表 1.5-2)。这一结果与该区域地质构造的实际情况 是吻合的,也与《中国及邻区现代构造应力场图》(谢富仁等,2015)的汇编 资料总体特征基本一致。同时也可看出,区域内不同分区主压应力轴取向 范围大体一致,但由北向南主压应力轴方向逐步向南偏转,不同分区错动 性质存在差异,显示这一地区构造的复杂性,反映不同区域局部应力场的 不同,即不同区域控制地震活动的构造存在差异。

১৮ চহ	节面I		节面II		P 轴		T 轴		出土山丘	
地区	走向	倾角	走向	倾角	方位	仰角	方位	仰角	钳列性质	
1-安徽南部	/	/	/	/	69	7	339	2	SS	
2-湖北东部	/	/	/	/	77	66	159	0	Ν	
3-江西	/	/	/	/	98	4	187	10	SS	
4-湖北中部	347	46	129	51	64	20	327	88	Ν	
5-湖北中东部	40	80	200	10	40	35	220	55	N	

表 1.5-2 黄石经济技术开发区区域及邻区地震平均应力场和平均错动性质

注: SS-走滑型; N-正断层。编号 1-3 资料来源自汪素云等(1985), 4-5 资料来源自高锡铭等(1994)。

综合分析表明,由于区域内震源机制解资料缺乏,得到的结果一致性 较差。因此,结合地震平均应力场的结果,区域主压应力轴优势方向为 NEE-SWW向,仰角较大,主张应力轴优势方向为 NW-SE向,仰角近水平, 区域断裂以正倾滑断层破裂为主。

1.6 区域地震活动性评价

自有地震记载以来,区域共发生 M≥4.7 级破坏性地震 55 次,1900

年以前发生破坏性地震 35 次, 1900-1949 年记录破坏性地震 8 次, 1949 年 后发生 12 次, 其中最早的地震记载是公元 319 年 1 月江西南昌西北的 5¹/₂ 级地震;最大地震为 1917 年 1 月 24 日安徽霍山 M6¹/₄级地震,震中烈度达 VIII。区域内现代地震 1970 年以来共记录 M≥2.0 级地震 1888 次。因此, 工程区域具有中等地震活动水平。

2)区域内破坏性地震主要在六安-霍山、黄冈黄石、九江、钟祥等地 相对集中分布,现代地震与破坏性地震空间分布总体特征基本一致。区域 内1970年以来 M≥4.0 地震平均震源深度约为 8.47km。

3)区域地震平均应力场最大主压应力轴方向为 NEE-SWW 向,最大主 张应力轴方向为 NW-SE 向,区域主要断裂以正倾滑破裂为主。

4)区域涉及长江中游地震统计区、郑庐地震统计区、华北平原地震统 计区和长江下游-南黄海地震统计区。各地震统计区地震活动均有明显平 静和活跃交替现象。未来百年内,长江中游地震统计区、郑庐地震统计区 和长江下游南黄海地震统计区地震活动以活跃期水平估计,华北平原地震 统计区地震活动以平均地震活动水平估计。

综合分析表明,区域具有中强地震活动水平,目前处于第二次大的能量释放期的后期,未来百年以地震活跃期水平估计其地震活动趋势,不排除发生 M6.0 级地震的可能性。

2 区域地震构造环境

2.1 大地构造单元划分及特征简述

区域构造单元如图 2.1-1 所示,目标区位于扬子准地台的下扬子台褶带 内,与秦岭-大别褶皱系的桐柏-大别断隆相邻。

2.1-1 区域大地构造单元分区图

I-扬子准地台: I₁-江南台隆、I₂-下扬子台褶带、I₃-两湖断陷: I₁-秦岭-大别褶皱系: IⅠ₁-桐柏-大别断隆、 II₂-北淮阳断褶

2.1.1 下扬子台褶带

区域上位于江汉盆地东侧,北与桐柏-大别断隆相邻,南以路口断裂 和幕阜台拗相隔。

早古生代处于相对稳定的沉降时期,沉积连续。岩性、岩相较为稳定,反映是地台相的沉积环境。寒武系和奥陶系为碳酸盐岩建造,志留系为砂

页岩建造。

晚古生代地壳活动频繁,系间、统间常呈平行不整合接触。泥盆系和 石炭系遭受剥蚀的程度不同,在各地发育的情况也不尽相同。下部为石英 砂岩-砂页岩建造,中部为含煤建造,上部位碳酸盐岩建造。二叠系由两套 含煤建造和两套碳酸盐岩建造组成,向北过度为硅质页岩。

在经历了早-中三叠世最后一次广泛海侵后,晚三叠世开始转为陆内 盆地的沉积环境。上三叠统至中侏罗统为陆屑含煤建造,上侏罗统至白垩 系为红色建造,并发育陆相中基性、中酸性火山岩系。

晚燕山至喜马拉雅运动时期,沿部分走向断裂带发育一系列断陷盆地。 新近纪以来,本带以继承性次级边缘断块差异活动或拗陷差异活动为主, 皖中、赣北相对较强,江夏至黄石近东西向构造带次之,低频度中等地震 活动的总格局与此一致。

2.1.2 两湖断陷

两湖断陷横跨湘鄂两省,是上叠在扬子准地台印支-燕山褶皱隆起带 之上,白垩纪开始发育起来的陆内盆地。包含洞庭盆地,为晚白垩世-早 新生代准裂谷伸展构造。它经历了晚白垩世-古近纪、新近纪和第四纪三 期盆地演化进程,但南北差异明显。

早白垩世晚期,仅在沉降区的西部和北部边缘有沉积。晚白垩世,沉 积向盆地中心扩展。东西向的华容断隆沉积区分隔为南、北两个盆地,南 部洞庭盆地普遍缺失新近系,北部江汉盆地则新近系厚达 800m。盆地最大 堆积厚度 5000~7000m,并有晚白垩-古近纪多期钙碱性潜火山岩侵位。

第四系厚度约 250~300m。区内边界同沉积断裂差异活动显著,历史中强震大都沿北北东和北北西向断裂密集分布,最大地震事件为 1631 年常德 6¾级地震。

2.1.3 桐柏 – 大别断隆

桐柏-大别断隆包括桐柏山、大别山等地区,构成桐柏-大别山系,山脉在西部呈北西向延伸、东部转向北东,构成醒目的大别山弧形构造。

从古生代始,它一直是扬子和中朝克拉通之间秦岭海中类岛弧构造。 中生代以来,随着扬子与华北地台两大板块的聚敛、碰撞,发生了两次重 要构造事件,形成了印支-燕山期桐柏大别断隆变形带,中生代酸性岩浆 侵位强烈。北北东向麻城-团风断裂将本区分割东西两个块体。晚中生代 -新生代以来,本单元以断块差异运动为主,边缘地段因伸展运动形成断 陷盆地,并伴有玄武岩侵位与喷溢。其东半区东大别次级断块周缘和北东 向对角线方向上分布有一系列中等地震(4¾ ≤ M ≤ 6¼)。

2.2 区域新构造运动及其与地震活动的关系

2.2.1 区域新构造分区

根据前新近纪的基岩结构与构造、新近纪以来的地壳发展史、断裂活动和变形、地形地貌等,将区域分为以下一级新构造单元(图 2.2-1),即淮南沉降区(I)、桐柏-大别隆起区(Ⅱ)、下扬子北部升降区(Ⅲ)。

1) 淮南沉降区(I)

为中生代至新生代继承性断块拗陷。新近纪以来的沉降即沿北西西向 古断裂拉伸形成,同期堆积厚度 200-400m,其第四系最大厚度约 120m。

2) 桐柏-大别隆起区(II)

为新近纪以来的继承性断块隆起地带,发育低中山、低山、丘陵地形, 缓慢间歇性隆起,形成多级层状地貌。其东半部大别断块隆起区周缘具有 明显的新构造断错地貌陡坎和水系,一些地点显示更新统地层被错切和变 形。此外,桐柏断块和大别断块南翼尚具有自北向南掀斜的特征。

I-淮南沉降区; II-桐柏-大别隆起区: II₁-桐柏断块隆起区、II₂-大别断块隆起区; III-下扬子北部升降 区; III₁-随应低隆起、III₂-江汉-洞庭沉降区、III₃-黄石-成宁波状升降区、III₄-幕阜山隆起区、III₅-潜 山-望江升降区、III₆-庐山隆起区、III₇-鄱阳湖沉降区、III₈-九华山隆起-区

3) 下扬子北部升降区(III)

本区自西而东呈现拗陷与隆起相间排布的新构造格局。西侧江汉-洞 庭沉降区是叠置于已变形的古近系底垫层之上的伸展构造盆地,新近系最 大厚度 700~800m,第四系最大厚度 250~300m,盆缘局部地段发育同沉积 断裂,构成盆内侧发育埋藏阶地沉溺湖区、盆外侧发育 3~4 级间歇上升阶 地、岗地,构成的非对称的第四纪地貌面景观。幕阜山隆起区和九华山隆 起区为低中山、低山、丘陵地形,缓慢间歇隆起,发育多级层状地貌。鄱阳湖沉降区继承白垩纪-古近纪构造沉积格局,第四纪沉降范围具超覆特征,但厚度仅百余米。庐山断块隆起区突兀于河湖波岗状平原之上,主峰 汉阳峰高达1474m,仅中新世中期以来就上升了800m,显示了强烈地微断 块隆升的特征。黄石-咸宁升降区和潜山-望江升降区发育丘陵、丘岗、 残山、河湖地貌,呈现间歇微震荡性运动,第四纪堆积最大厚度小于100m。

2.2.2 区域新构造运动特征

区域新构造运动的基本特征,主要表现在继承性与新生性、整体性与 差异性、间歇性三个方面:

1) 继承性与新生性

工作区新构造有明显的继承性。在桐柏 - 大别山和幕阜山地区, 它继 承了前期的隆起运动, 而在江汉盆地地区, 则承袭了前期的拗陷运动。然 而, 这种隆起和拗陷运动与早期的隆起与拗陷运动存在明显差别, 主要表 现在隆起的范围不断扩大, 拗陷的地区逐渐缩小。例如江汉盆地周缘的新 近系和中更新统现已裸露地表, 形成侵蚀低丘或盆缘过渡岗地带。桐柏 -大别山地区的一些区域断裂由前期陆内造山的推覆、冲断变成走(逆) 滑 性质等, 都是新构造运动的新生性特点。

2) 整体性与差异性

区域新构造运动总体表现为隆起与拗陷,但也显示出明显的边界局部 差异。例如桐柏、大别和幕阜地块,虽然具有整体隆升优势,但在隆升的 背景下边缘发育有断陷或拗陷盆地。就活动强度而言,断裂活动的差异性 则较为显著,边界断裂具有发生较大中等地震的能力,而地块内部断层则 通常具有较小中等地震的能力,并且其余断裂活动性则相对微弱。

3) 间歇性

新构造运动是地壳构造活动过程中的一个新环节,在时间进程上表现 为间歇性,在空间上则表现为多层性特点,以同期地层的平行不整合面或 地貌侵蚀面作为标志。区域内新构造事件大致出现在中新世末、上新世末、 早更新世末三个时段。新构造运动的间歇性特点主要表现在层状地貌上, 如表 2.2-1 所列举区域内几个代表性地区夷平面高程变化。

区域多层性还表现在多级河谷阶地上。如长江、淮河、赣江和皖水等 都发育 3-5 级阶地,并反映新构造运动具有间歇性振荡和时强时弱的特点。 长江在汉口-武穴段发育四级阶地,阶地相对高程为:高漫滩(T1)18~23m (Q₄),二级阶地(T2)22~25m(Q₃),三级阶地(T3)30~45m(Q₂),四 级阶地(T4)50~70m(Q₁)。

•							
47 81	叶化	地区					
纵刑	₩J /FZ	桐柏 - 大别山	幕阜山				
P1	十近知	1100~1200	1100~1200				
P2	百过儿	900~950	900~1000				
P3	新近幻	400~600	400~600				
P4	きとこ	200~300	200~350				
P5	早更新世	$100 \pm$	100 ±				

表 2.2-1 区域主要地段各级夷平面简表(单位: m)

2.2.3 新构造运动与地震的关系

本区多数中强震(4¾ ≤ M ≤ 6¾)发生在上述不同构造单元的分界带附近。例如1954年合肥5¼级地震、1336年黄梅4¾级地震、1932年麻城6级地震和2005年九江-瑞昌5.7级地震等中强地震分布于大别断块隆起区周缘地带。

新构造断隆幅度最强的地带为中等地震主要能量释放地段。桐柏-大 别隆起区霍山-信阳一线南侧断隆活动显著,也是掀斜面上升幅度最大的 顶部,沿此一线发生 4¾ ≤ M ≤ 6½震约 12 次。不少地震发生在新近纪以来 的沉降盆地边缘。这些盆地多具同沉积断陷性质,且在新构造时期沉积厚 度和沉降中心有明显变化。例如潜山-望江升降区边缘的潜山、贵池、九 江等地发生的多次中强震; 江汉 - 洞庭沉降区东缘仙桃、岳阳等地发生多 次较小中等地震, 而其西缘常德 1631 年 6¾级强烈地震事件则是江淮地区 已知的最为惨重震害的历史地震。

2.2.4 区域现代构造应力场与区域构造活动的关系

新构造运动时期(距今 10~8Ma),中国大陆地壳受到西南侧印度板块 向北低角度俯冲和东侧西太平洋板块向西高角度俯冲双重动力体系的控制。 目标区所在的区域地壳活动性同样也受到东、西两大动力体系的影响,应 力场以近东西向的水平挤压为主,这也导致了古老构造行迹在新构造期间 发生了不同程度的复活,出现了许多规模和活动性不等的活动断裂和断块 隆起区、断陷区。断裂的继承性活动、断块的差异性升降运动、掀斜活动 等便成为该区新构造运动的主要类型,控制了该区现今地貌的发育和地震 的发生。由于该区活动断层多以盖层断裂为主,切割深度浅,活动性弱, 趋于僵化,相对运动量小,应力常难以集中,能量多以温泉形式释放。因 此,强震发生频率低,但总体上弱震较为频繁,震中分布密集。

2.3 区域主要断裂活动特征

区域主要发育不同方向的的三组断裂(图 2.3-1),具有复杂的几何学结构和多期活动形迹。新构造期以来,这些断裂带的活动强度与地震活动的相关性不尽相同,差异明显(表 2.3-1)。

1) 北西向断裂

(1) 信阳 - 金寨断裂(F2)

该带东起汤池,经毛坦厂、龙门冲、响洪甸、金寨南,向西与大别山 北麓的商城-信阳断裂相连。总体呈近东西转南东东向延展,区域内长约 30km。主带由一系列左旋斜列的破裂带组成。商城以东可以分成三个较显

著的自然构造段,分段长度分别为 60km、45km 和 40km,各构造段之间的 分割构造为北北东向左旋破裂带和燕山期火成岩体等。它们共同形成东宽 西窄的强动力变质带,单带最宽达 4km。该带总体上是秦岭地槽系最东段 后造山阶段晚侏罗世金寨、霍山和晓天等三个火山喷溢盆地的北界,断裂 进一步发展又切穿了这类火山岩和更晚期的正长岩。在航磁场上主带表现 为短波长跳跃变化的负异常背景上,出现一系列梯度大的正异常峰值,表 明断裂切割深度较大,应属壳断裂。该断裂在晚白垩-古近纪以后有一次强 构造变形致使梅山群或佛子岭群仰冲于上白垩统之上,碎裂岩、麋棱岩带 最宽达 200m。在复南山剖面中新鲜的断层泥厚 40cm,构造岩带内的剪破 裂(倾向南西、倾角 60~80°)表明断层具有左旋逆冲性质。杨泗岭取断层 泥 ESR 测年为(48.8±2.9)万年。在地貌上南盘普遍为 350~400m 的丘陵, 而北盘为相对平坦的冲积平原,反差 100-150m。1652 年霍山东北 6 级地震, 以及仪器定位的 M2.0~4.5 级小震,集中分布在沿带金寨和霍山两段,由此 认为,该断裂是区域内较活动的构造带。综合评价为早-中更新世断裂。

(2) 襄樊 - 广济断裂(F4)

自襄樊经云梦、孝感、武汉北郊、黄冈至武穴,总体走向 W310°~320°。 该断裂卫星影像清晰,地球物理场(重力航磁、人工地震)反映明显,沿 线分布有基性岩体和发育多种构造岩(碎裂岩、麋棱岩、角砾岩等),显示 断裂带切割深度和长期活动的特点,是南、北两个大地构造单元和新构造 运动(含地震)分区的界线。断裂西段通过大洪山北侧一系列红色盆地(枣 阳耿集和随州新阳店、伏岭、三里岗),前古生界老地层向南逆冲于白垩系 红层之上:中段由京山三阳向南东伸延至黄冈,断裂带隐伏在第四系之下: 东侧黄冈-武穴一带基岩出露区断裂及麋棱岩发育,断面倾向南西。在武 汉附近,襄樊-广济断裂延经孝感、黄冈一线,通过横店南、天兴洲东北

端和阳逻附近。断裂沿线挤压破裂带和次级褶曲、断层发育,如岱山、青山、阳逻龙口及鄂州白浒镇等地,并分布有新生代玄武岩、第四纪洼(槽) 地和湖泊群(野猪湖、白水湖、后湖等),表明断裂带在经历了中生代强烈 挤压、剪错等变动后,至新生代时期具有北升南降的张(张剪)性活动特 点。

断裂的活动性鉴定结果表明, 襄樊 - 广济断裂动段最新活动时代为中 更新世。在鄂州燕矾石龙咀等地的次级断层破碎带中采取断层泥物质用扫 描电子显微镜 (SEM)进行年代测定,显示断裂在中更新世有明显活动(雷 东宁等,2011);在黄州盆地张家岭露头,多条次级断层正断于白垩系 - 古 近系砂砾层中而未错断上覆中更新统红土,断层泥面上有近垂直于断层的 擦痕,所采集的灰褐色断层泥 SEM 测试结果显示,断层在中更新世有弱活 动;在浠水渡口湾露头,断层正断于太古界片麻岩中,断层下盘近断面处 发育褐红色的松软黏土状断层泥,SEM 测试结果显示断层在中更新世有弱活 活动;在武穴西北竹影山象山水库剖面震旦系岩层逆冲于奥陶系灰岩上, 断层破碎带内断层泥样品电子自旋共振 (ESR)年代测定为(49.3±5.3)万 年,但断层未切割上覆中更新统风化壳及红土层,表明断层的最新活动时 代为中更新世早期;在武穴凤凰山猪头角剖面,志留系砂、页岩逆冲于三 叠系灰岩上,断层并未错断上覆上覆中更新统红黏土,破碎带中断层泥物 质 ESR 年代测定结果为(46.2±6.6)万年,表明断裂中更新世曾有活动(武 汉地震工程研究院,2006)。这些均反映断裂在早第四纪曾有活动。

从地震构造角度分析: 襄樊 - 广济断裂对区域地震活动有明显的控制 作用,致使其南、北侧地震强度、频度、分布及其应力环境和发震构造等 不一致,一般在其与北北东 - 北东向活动断裂相交部位可能有中等强度地 震发生(如武穴 1972 年 4.0 级,随州 2006 年 M4.7 级)。

黄石经济技术开发区•铁山区区域性地震安全性评价报告

50

四系	主要断裂及编号
	F1 六安断裂
	F2 信阳-金寨断裂
- \r 	F3 桐柏-磨子潭断裂
「近糸	F4 襄樊-广济断裂
	F5 黄陂-青山口断裂
	F6 蕲州断裂
亚玄	F7 乌龙泉断裂
王永	F8 天门河断裂
	F9 胡集-沙洋断裂
	F10 石首-监理断裂
前白垩系	F11 沙湖-湘阴断裂
	F12 阳新断裂
	F13 蒲圻-咸安断裂
新生化学发生	F14 鹰潭-余干断裂
加工化石水石	F15 嘉鱼断裂
	F16 常德-益阳-长沙断裂
	F17 罗山-大悟断裂
更新世活动断裂	F18 潢川-新县断裂
	F19 潜北断裂
	F20 纪山寺断裂
	F21 刘隔断裂
中更新世沽初断裂	F22 金口-谌家矶断裂
	F23 麻城-团风断裂
	F24 岳阳-桃江断裂
前第四纪断裂	F25 汨罗-崇阳断裂
	F26 唐口-白沙岭断裂
	F27 皂市断裂
	F28 铜鼓-武宁断裂
息伏断裂	F29 巴河断裂
	F30 霍山-罗田断裂
	F31 古市-德安断裂
标区	F32 郯庐断裂
	F33 武宁-瑞昌断裂
	F34 渣津-拓林断裂
	F35 宜丰-景德镇断裂
— /7	F36 沂沐断裂
震级	F37 怀宁-宿松断裂
地震	F38 葛公断裂
时间	F39 江南断裂
	F40 赣江断裂
M=6.0-6.9	F41 新建-樵舍断裂
	F42 九江-靖安断裂
	F43 丰城-乐平断裂
M=5.0-5.9	a se a marte a mass

M=4.75-4.9

50km 100km

黄石经济技术开发区•铁山区区域性地震安全性评价报告

表 2.3-1

区域主要断裂简表

纪早	断裂名称	区内长 度(km)	产状			斯列州氏	最新活动	扫 关地雪江击
狮子			走向	倾向	倾角	阿禾住顶	时代	而入地表冶为
F1	六安断裂	70	近 EW	NS	陡	正断	Q ₁₋₂	1425 年 5¾级地震
F2	信阳-金寨断裂	230	NWW 挽近 EW	NNE SSW	50-80°	正断	Q ₁₋₂	1652年6.0级,1913年5.0级,1925年5.0级地震
F3	桐柏-磨子潭断裂	270	NWW 挽近 EW	NNE SSW	50-85°	正断、逆断	Q1-2	1917年64级,5½级、1770年5¾级,1625年5½级地震、1934 年5.0级地震
F4	襄樊-广济断裂	>330	NW	NE SW	60-80°	逆断、正断 左旋	Q1-2	1629年4¾级、1633年4¾级、1640年5.0级、2005年5.7级, 4.8级、近现代小震频繁
F5	黄陂-青山口断裂	. 190	NW	SW	陡	逆断、正断	Q1-2	现代小震频繁
F6	蕲州断裂	60	NW	SW	40-60°	逆断	Q1-2	1629年4¾级地震
F7	天门河断裂	60	EW				Q ₁₋₂	1930 年夏 5.0 级地震
F8	乌龙泉断裂	70	近 EW	S	陡	正断	Q1-2	近现代小震频繁
F9	胡集-沙洋断裂	50	NW	NE	45°	右旋	Q ₁₋₂	1469年5½级、1605年5级地震
F10	石首-监利断裂	60	EW	NE	陡	正断	Q2	
F11	沙湖-湘阴断裂	215	NNE	NW	50-70°	正断	Q ₁₋₂	1556年5½级
F12	阳新断裂	80	EW	S	65-80°	正断	Q1	1897年5.0级
F13	蒲圻-咸安断裂	110	NE	SE 或 NW	50-70°	正断右旋	Q ₁₋₂	1954 年 4¾级
F16	常德-益阳-长沙 断裂	64	NW			正断	Q ₁₋₂	
F19	潜北断裂	95	NEE	SSE	陡	正断	Q ₁₋₂	
F20	纪山寺断裂	65.5	近 EW					

黄石经济技术开发区•铁山区区域性地震安全性评价报告

续表 2.3-1

区域主要断裂简表

编号	断裂名称	区内长 度(km)	产状			断裂性质	最新活动	相关地震活动
->ng g			走向	倾向	倾角		时代	
F21	刘隔断裂	35	NE	NW	35-45°	正断	Q1-2	1470年5级、1630年5级地震
F22	金口-谌家矶断裂	. 50	NE	NW		正断	Q1-2	1605 年 4¾级
F23	麻城-团风断裂	240	NNE	NW SE	60-70°	正断 逆断右旋	Q ₁₋₂	1913年5级、1932年6.0级、1925年5级、1633年4¾级 1640年5级
F25	汨罗-崇阳断裂	165	NEE	SE	70°	正断		
F26	唐口-白沙岭断裂	. 80	NNE	SE	45-65°		Q ₁₋₂	1575年5½级、1863年5.0级
F28	铜鼓-武宁断裂	130	NE			左旋	Q1-2	319年51/2级、1888年51/4级地震
F29	巴河断裂	>60	NNE	NW	70°	逆断	Q1-2	1633年4¾级、1640年5级
F30	霍山-罗田断裂带	150	NE	NW SE	陡	逆平移 右旋	Q ₁₋₂ Q ₃	1336年4¾级、1634年5½级、1652年5½级,6.0级、1770年 5¾级、1917年6¼级,5½级、1934年5.0级
F31	古市-德安断裂	150	EW	N S	60°	正断	AnQ	
F32	郑庐断裂南端段	140	NNE	SE	60-85°	正断右旋	Q1-2	1336年、1497年和1635年3次4¾级地震
F33	武宁-瑞昌断裂	65	NNE	SE	65°	正断	Q1-2	2005年5.7级、4.8级
F34	渣津-柘林断裂	140	NEE	SSE NNW	70-80°	正断	AnQ	
F37	怀宁-宿松断裂	80	NE					
F38	葛公断裂	80	NNE	SEE NWW	70-80°	右旋走滑	AnQ	
F40	赣江断裂	180	NNE	SE	50-75	正断	Q1-2	
F42	九江-靖安断裂	65	NNE NE	SE	50-85	正断	Q1-2	2011年5级地震

2) 北东向断裂

(1) 沙湖 - 湘阴断裂带(F11)

该断裂带南起自湘阴,经岳阳而达洪湖以北的沙湖,全长 200km 有余: 走向北北东, 主断层倾向西, 倾角不详。它早期是截断板溪推覆体和扬子 变形褶皱的左旋斜滑断裂带, 具有很发育的剪切构造岩。晚白垩-古近纪, 当江汉-洞庭准裂谷盆地发育时, 沙湖-湘阴断裂带即是其盆地扩张的东 缘边界, 同沉积作用导致断裂两侧显著的沉积地层(K₂-E)厚度差, 约 1000~ 2000m, 并有同期玄武岩沿带分布。新近纪至第四纪以来, 继承性作用明显, 沉溺湖东迁至断裂带西侧近邻地带, 湘阴凹陷第四系厚达 320m, 断裂东侧 普遍在 100m 以内。此外, 断裂东侧普遍发育三级阶地, 西侧无阶地出露, 沉溺明显。地球物理勘探和地表工作证实, 中更新统局部地段被错断。据 历史地震资料和现代地震台网观测, 沿断裂带所处部位曾有 3 轻破性地震。 综合评价为早-中更新世断裂。

(2) 麻城 - 团风断裂(F23)

该断裂是一条区域性深断裂,是大别隆起持续上隆的背景下形成的, 呈北北东向,以右旋错动为主,北起鄂边境的松子关,经麻城、团凤、咸 宁后进入湖南境内,全长 270km,控制了麻城盆地的发育。新生代以来表 现为继承性的构造活动,各段活动不均一,南段较北段活跃(湖北地震志, 1990)。北段东西两盘在地貌上有明显差异,东盘河谷呈"V"型,以500~ 1000m低山为主;西盘以70~250m的丘陵和垄岗为主,地形平坦。南段断 裂呈沉陷状态,多堆积了40m厚的上更新统和全新统(古志成,1981)。根 据历史地震资料记载,沿此断裂曾发生过5次 M≥4 破坏性地震,最大为 1932年的 M6.0 黄土岗地震;5 次破坏性地震中3 次发生在与襄樊-广济断 裂的交汇处。综合评价为早-中更新世断裂。 (3) 郯庐断裂带(F23)

它是中国东部最重要的走滑断裂构造带。区域仅涉及其西南尾端黄梅 至潜山一段,主断裂走向北东 30°,由 38 条分支断层组成向北发散、向南 收敛的宽带,段长约 140km,倾向南东,倾角 70°~80°,构成桐柏-大别 隆起区东缘边界,深切地壳,沿线有新生代玄武岩,西升东降、地貌反差 强烈。在宿松、太湖山前切割中更新统阶地,黄梅 SEM 测年资料表明断裂 在上新世早更新世曾有活动。在黄梅县西的龙腰燕山期花岗岩内采取同方 向次级小断层作断层泥 ESR 年代测定为(51.4±5)万年(中国地震局地质 研究所,2006)。本段曾发生 4¾~5 级地震 3 次,综合评价为早-中更新世 断裂。

(4) 霍山-罗田断裂带(F30)

它由落儿岭等一组北东向断裂组成,北起凤凰台附近,向西南经霍山、 落儿岭、土地岭等地可断续延伸到罗田一带,主要发育于前震旦纪变质岩 和中生代地层中,总体走向 NE50°左右,倾向 NW 或 SE,倾角 65-85°,长 约 130km。沿落儿岭土地岭断裂角砾岩和麋棱岩发育,断裂右旋错移蚌埠-吕梁期祝家铺岩体和燕山期周家湾岩体,前一岩体被错移 400m(姚大全等, 2003)。断裂在卫星影象上反映清晰,沿断裂出现峡谷和断层崖,有温泉和 冷泉分布。在土地岭西南侧杨树沟附近,断裂中发育 1.2m 厚的灰黄和灰白 色断层泥,经热释光测定为(TL125±6)ka,表明断层泥可能形成于中更新 世晚期,断层泥扫描电镜测试分析为粘滑活动(姚大全等,2003)。该断裂 与 NW 向断裂交汇部位历史上发生过多次 5-6¼级地震,其中最大的有 1652 年 6 级和 1917 年 614 级地震。在罗田城关南西和东北高庙采集断层泥 ESR 年代测定值分别为 738±73ka 和 332±33ka(中国地震灾害防御中心,武汉地 震工程研究院,2008)。断裂西南段附近的罗田南 1634 年曾发生 5½级地震。

因此,综合评价该断裂北段为晚更新世活动构造,南西段为中更新世断裂 段。

3) 近东西向断裂

(1) 六安断裂带 (F1)

该断裂向西与金寨断裂汇合,向东经六安南、肥西防虎山南麓、再往 东于肥西县东南被郯庐带切截,近东西向延伸 70km。地表形迹大部分被第 四系掩盖,但被航磁和钻探所证实,北盘为宽缓的异常,为华北型霍丘群 所致:南盘呈负异常带,是秦岭地槽型卢镇关和佛子岭群等的显示,表明 该带是基底岩系的重要控制边界。从早侏罗世开始,断裂带南北两盘的差 异活动明显增强,北盘为下中侏罗统,厚约 5000m,南盘为上侏罗统至新 近系,厚达 1000m。新近纪以来,断裂反向活动,导致前第三系地层总体 向北-北东抬升,致使老地层出露地表,但在东段六安至肥西一带,则出现 继承性活动,北盘抬升,南盘下降,形成楔状第四纪拗槽。其新构造活动 主要表现在地形地貌和地震活动方面。例如在防虎山和龙玉山地区,主断 裂带形成宽 200m 的断层谷,丰乐河二级支流沿河谷流逝,堆积了十米厚的 全新世砂粘土层: 1425 年六安 5¾级地震发生在该断裂带上,故综合评价为 早-中更新世断裂。

2.4 区域构造环境分析

2.4.1 中强震例分析

1) 1917 年安徽霍山 6¼级地震

野外地质考查表明:震中区发育北东向帚状落儿岭断层组(图 2.4-1), 其展布宽度约 4km,长约 30km,破碎带各宽约百余米,曾右旋切断基性岩体。落儿岭断层组均表现为深切"V"形断层谷,谷中可见离堆山,谷坡多跌

水。据宏观震害推断: 该帚状构造中的土地岭-落儿岭断层为发震构造, 走向北东 50°,倾向西北,倾角 45°(钻孔产状),震源深度 11km,破裂长 度 12km。这一地震亦在土地岭、落儿岭断层与桐柏-磨子潭裂的汇而不交 之处。就三维空间而言,桐柏-磨子潭断裂为深断裂,而土地岭-落儿岭 断裂为浅切割构造,构成立交结构:桐柏-磨子潭断裂的加速蠕动有可能 导致旁侧小断裂累积应变而失稳扩展。此外,土地岭-落儿岭断层北东端 距霍山地堑 (J-K-E)西南角约 l0km。该盆地总体呈近东西向菱形展布,但 西南角延伸较远,指向邻近的落儿岭震中。由此可见,霍山地重西南角的 开口破裂和土地岭落儿岭断层北端的失稳扩展也是孕震的重要原因之一。

图 2.4-1 1917 年在霍山落儿岭 6¼级地震的震中构造及等震线图 1、桐柏-磨子潭断裂, 2.土地岭-落儿岭断裂组, 七、八为地震烈度

1970年以来,霍山地区小震活动频繁,最大震级为 4.5 级。地震分布 于土地岭-落儿岭断层组和桐柏-磨子潭断裂上,形成共轭地震条带。显 然,这是它们同时活动的结果。然而,从罗田天堂寨至霍山漫水河、落儿 岭一线地震强度较高,几乎全部 10 次 3 级以上有感震都分布于此带。1973 年 3 月 11 日 4.5 级地震发生于北东向落儿岭断层组与北西向桐柏-磨子潭 断裂的交汇处,大致相当于 1917 年 6¼级地震震中部位。1917 年霍山 6¼级 地震后,霍山曾出现 5.5 级最大余震, 1934 年曾发生 5 级中强震, 1954 年 发生六安、合肥 5¼级地震,加上 70 年代的北东向小震活动,鲜明地体现 了北东向地震破裂构造线。这种现象上一个地震活动周期即已存在。它表 明:北东向浅切割地震破裂构造线与大别山北麓北西西向深断裂系统形成 孕震构造系统。此种孕震型式源于大别断隆活动与其次生横向转换剪切破 裂的演化进程。

2) 1932 年湖北麻城 6 级地震

麻城 6 级地震发生于大别断块和桐柏断块的边界构造带上,亦即麻城-团风断裂带(图 2.4-2)。

图 2.4-2 1932 年麻城 6 级地震的震中构造及等震线图(据湖北地震史料汇编)

黄土岗北东向帚状断裂带是麻城 - 团风断裂北段上盘条状断块的西缘 边界构造。它由三条断裂组成:东为白路边 - 石槽冲断裂,西为火炮寨 -豹子岩断裂,中间即为鹰山尖 - 四道河断裂。东西两断裂长约 20km,北段 向北西倾,南段向南东倾,倾角均在 70°以上,为枢纽构造。东断裂由南往 北破碎带由 10 余米递增为数十米,硅化带亦同步增宽:西断裂由北向南硅 化破碎带由 10 余米增大为百余米:位居其中的鹰山尖 - 四道河断裂不足 5km,倾向北西,倾角 60~75°,其鹰山砂化破碎带宽约 500m,往南过四 道河后迅速尖灭。此帚状断裂带平均展布宽度约 5km,东西两断裂之间呈 现第四纪槽地。根据黄土岗 6 级地震的等震线,得地震断层倾向北西,倾 角 65°,长 13km,系由南往北的单侧破裂,震源深度约 8km。显然,黄土 岗北东向帚状断裂带为孕震构造系统,麻城 - 团风断裂为其控震构造。

根据历史地震序列,如1913年麻城5级地震、1925年商城5级地震、 1932年黄土岗6级地震均分布于麻城-团风断裂带上和近邻地带,这显然 表明了麻城-团风断裂带的控震作用。

3) 1954 年湖北赤壁 4¾级地震

震中区位于江南台隆与其北侧古生代拗陷的过渡地带。这一过渡地带 自晚中生代以来表现为扭动特征,南北两侧地貌形态反差较强。新构造期, 南侧幕阜地块缓慢隆起,北侧为震荡性升降。地貌分异明显。

赤壁地震发生于临湘弧形构造东翼弧上。其西翼被幕阜地块西缘构造 沙湖 - 湘阴断裂所截(图 2.4-3)。临湘弧东翼主干断裂为五洪山 - 羊楼司断 裂,其走向由北东渐变为近东西向,长约 40km,倾向南东,倾角 58°-70°。 在五洪山一带,出露北东东向砂化破碎带,宽约 30m,倾向南东,倾角 50°, 并且沿走向向东延展约 6km,继而向东隐伏,倾伏角达 20°~30°。坑探表 明:五洪山硅质破碎带中见有 1-3m 宽的裹有砂质角砾的杂色断层泥,温泉

群沿带分布,地表水温 35℃~65℃。五洪山-羊楼司断裂东段北盘发育第 四纪槽地(18×3km),并且该槽地西端部存在中更新统网纹红土所构成的横 向隆起,东端为近南北向断裂所截,这次中强震即位于五洪山-羊楼司断 裂东端部石坑渡,显示了相对活动段闭锁端孕震的构造形式。

2.4-3 1954 年 2 月 8 日赤壁级地震等震线图

F1.五洪山-羊楼司断裂 (蒲圻-咸安断裂南西段); 1、断层; 2、等烈度线; 3、温泉; 4、省、县界

据史载:明、清两朝和民国年间,赤壁、临湘一带均有地方有感震。 1954年2月8日赤壁4级地震之前,发生3次有感震,震级约为3.5~3级。 主震之后,出现11次有感震:最大一次余震发生于1955年1月2日,有 感半径至少为 20km,震级可能为 4 级。显然,赤壁地震为前震、主震、余 震序列,体现了五洪山-羊楼司断裂宽大砂化破碎带的非均匀介质特征。

4) 2005年九江 - 瑞昌 5.7 级地震

2005年11月26日8时49分,在江西省九江-瑞昌交界处发生5.7级地震,震中位置: N29.72°, E115.71°(图2.4-4),当日12时55分又发生4.8 级最大余震,震中位置: N29.71°, E115.72°:余震序列丰富,这二次地震震源深度10-12km。宏观震中大致位于赛湖农场。

图 2.4-4 九江-瑞昌 5.7 级地震烈度分布图 F1.郑庐断裂南端段: F2.九江-德安断裂: F3.襄樊-广济断裂南东段-推测延伸段: F4.瑞昌断裂: VII、VI、地震烈度等值线

据宏观烈度考察结果,本次地震极震区烈度为VII度,长轴24km,北东 东方向,短轴15km,面积约260km²。主要包括九江县的城门乡、新合乡、 新塘乡、港口镇乡、狮子镇、瑞昌市市区以及瑞昌市航海仪器厂以东地区, 还包括长江北岸的小池镇少部分地区。VI度区与VII度区长轴走向基本一致。 长轴长约61km,走向北东,短轴45km,面积1800km²,包括九江县、九 江市周岭以西地区、瑞昌市花园以东地区、黄梅县坝口-陈杨武一带以南 地区和武穴市、阳新县、德安县部分地区。

本次地震事件位于扬子断块次级构造单元中、下扬子隆陷带北缘,其 北即为秦岭-大别造山褶皱带之桐柏-大别断隆。该震区具有多个次级构 造单元汇聚的特征:即九岭-幕阜隆起、鄱阳湖坳陷、九华山隆起、东大 别断块隆起和北东向长江裂陷。北北东向条状庐山微断块处各单元汇聚中 心部位,突兀于鄱阳湖坳陷西北隅或者说耸立于九岭-幕阜隆起地块东北 端。汉阳峰 1474m,具有强烈上升的微断块活动特征。与此相应,多条区 域性大(深)断裂带在此交汇,即北西向襄樊-广济断裂带、北北东向郯 庐断裂带、北东向长江断裂带、北北东向九江-德安断裂和湖口-星子断 裂带,显然,该震区具有复杂的构造汇聚环境。

在深部重力异常方面,震区大体位于 0 等值线附近,其周邻分别为桐 柏-大别重力(0~-40×10⁻⁵m·s⁻²)、幕阜-九岭重力低(0~-30×10⁻⁵m·s⁻²)、九 华山重力低(0~-20×10⁻⁵m·s⁻²)和鄱阳湖重力高(0~5×10⁻⁵m·s⁻²)。故此震区 具有上地幔隆起的特征,据航磁化极延拓 20km 的异常显示、震区存在近东 西向展布的中波长正磁异常体(50-80nT)判定为深部闪长花岗岩体,并与 地表侵入于志留系-三叠系中的燕山早期花岗闪长斑岩相关联。震中区地 壳厚度 33-34km,主要地震事件大致位于中、上地壳的界面附近。

震中区位于北东向瑞昌盆地东北端。该盆地向北东开口,朝南西收敛的楔型浅槽盆。盆地长轴延伸约 2km,最宽处约 7km,由二个左行右阶槽 地组成,古近纪开始发育,第四纪宽坦槽盆河谷地貌与东西两侧丘陵岗地 组合地貌,构成鲜明的差异构造特征。盆地北端开口部位河湖地貌面缓缓 向北倾斜,并与黄梅南长江两岸沉降堆积区融为一体。此外,依据前述震 区隐伏溶洞塌陷影响地面农田地陷的深度与规模,推测瑞昌盆地第四系厚 度普遍不大于 50m。

震中区志留系-三叠系地层印支-燕山期褶皱走向近东西,或者说为 北东东走向,为块缘褶带,因此瑞昌盆地边缘北东向断裂具有斜切褶皱走 向并追踪发育的特征,故而具有断续展布的形态。其两个子槽盆呈左行右 阶型式,并且阶区发育横向隆起,表明瑞昌盆地东西边界断裂具有第四纪 右旋剪切正倾滑作用。

2005年11月26日九江-瑞昌5.7级地震事件属主震余震序列,没有明显而清晰的前震序列。截至2005年12月25日,共记录到*M*_L0.1级以上的地震10514次,其*M*_L1.0~1.9级425次,*M*_L2.0~2.9级63次,*M*_L3.0~3.9级9次,*M*_L4.0~6.0级3次,余震序列呈现快速波动衰减特征。这表明该震主震震源为相对均质状态,主震破裂发生时导致震源椭球体产生大量剪切微破裂。由于很多*M*_L2.0~3.0级地震地面振感明显,因此沉积盖层下部(含侵入岩体)也受扰破裂。故大量余震显示为非均质状态。

九江 - 瑞昌地震事件震中分布主要集中于北北西条带内, 主震震中处 密集, 长度约 16km, 与 5.7 级震源体线性尺度相匹自。尽管如此, 依据综 合等震线长轴 24km 方位北东, 5.7 级主震破裂面应为北东走向, 而等震线 短轴 15km (约为长轴的 2/3), 方位北西, 可判定 4.8 级地震破裂面应为北 西走向, 构成共国剪切破裂。这种现象在余震序列中亦有 M3.0 级左右地震 成对出现的特征。因此, 可以判定, 瑞昌地震事件序列所展现的北北西向 地震条带具有一系列共国剪切破裂的发育过程。

2005年11月26日九江-瑞昌地震事件具有近代历史中等地震背景, 1911年2月6日九江曾发生5.0级地震,邻区阳新1897年也曾发生5.0级 地震。尤其值得关注的是,近十年来,震区及邻近场区显示了小震相对活 跃的趋势。1995年4月18日在瑞昌南桂林与九江县涌泉之间发生M4.9级

地震(N29°38′、E115°38′), 震中区烈度 VI 度, 北东向长轴 34km, 北西向短轴 18km, 震源深度 19km, 此后, 在北北东向郯庐断裂南段, 北北东向九江 - 德安断裂、北西向襄樊 - 广济断裂南东段及北东向瑞昌盆地断裂带北端段相继发生了一系列低频度 M3.0~4.0 级地震。

依据震源机制解,2005年11月26日5.7级地震和4.8级地震以及1995年4月18日 ML4.9级地震均为正倾走滑破裂作用,只不过在北西向主压应力(仰角较大)和南东向主张应力(仰角较小)作用下,北北西向破裂节面为左旋,北东向破裂节面为右旋。其震源机制应力解与边界控震构造的右旋滑动是相容的。

2.4.2 中强地震构造条件

根据区域及相邻地震带其它强震震例,可抽象归纳出如下与中强震相 关的地震地质条件。

1) M=6~6¾级的地震地质条件

(1)新构造运动时期主要活动断块的边界断裂带,往往是一级或二级 新构造分区的边界,且第四纪早-中更新世也表现了明显的活动性,或晚 更新世以来的活动断层;

(2)晚中生代-新生代裂陷盆地或断陷盆地的收敛闭锁段和区域活动 断裂的端部,第四纪断陷盆地的部位。

(3)新构造期区域主干活动断裂旁侧较大的条状上升微断块和显著沉降槽地;

(4)区域性深大断裂带断裂拐点、端点、分叉复合或呈斜列衔接部位,易于应力集中而发震;

(5)活动断块内所显示的中强震地震线及其相应的扭动-剪切破裂带;2)5~5.9级地震地质条件

(1)区域主干活动断裂带旁邻次生或低序次断层;

(2) 较大中强震地震地质条件区均可发生中强震;

(3) 新构造大型拗折带中弱滑动断层;

(4)区域隆起带上发育的小型新生代盆地或第四纪拉分洼地;

(5)活动断裂之间较小非连续闭锁段。

2.4.3 区域地震构造环境

目标区位于扬子准地台的下扬子台褶带内,与秦岭-大别褶皱系的桐 柏-大别断隆相邻。区域新构造运动的基本特征,主要表现在继承性与新 生性、整体性与差异性、间歇性,新构造运动强度并不强烈。

区域上展布有 43 条区域性大断裂,其中有 38 条区域性大断裂在早-中更新世有明显活动,1条(霍山-罗田断裂)在晚更新世活动明显。晚新 生代以来断块边界和不同构造单元分界地带的差异运动鲜明,所涉及的晚 新生代地层的变形轻微,即使是断错变形也不强烈,如郯庐断裂南端段错 切中更新统。但区域性大断裂深部的蠕滑与局部粘滑仍存在,因此低频度 较大中等地震在某些特定部位可能发生,如麻城、霍山等地震事件。

区域为华北大震活动区与华南内部少震稳定区之间准稳定过渡地带。 区域性大断裂围限的东大别断块有较为频繁的中等地震(4¾ ≤ M ≤ 6¼)活动, 江汉 - 洞庭断陷盆地 1631 年常德 6¾级强烈地震事件序列都显示了区 域准稳定地带的大地构造属性,不具备发生7级以上地震的地震构造条件。

3 近场区地震构造环境

根据《工程场地地震安全性评价》(GB17741-2005)及《湖北省区域性 地震安全性评价工作技术大纲(试行)》(鄂震发[2018]173号)的要求,以 不小于目标区外延 25km 的范围为近场区。本章将从地质构造、断裂活动、 新构造运动与地震活动性等几个方面,综合评价近场区的地震构造环境, 并编制了近场区地震构造图(图 3.1-1)。

3.1 近场区地质特征

3.1.1 地层与岩性

本区前震旦纪至第三纪各时代地层均有出露。前震旦系大别山群(Pt₁db) 出露于麻城-团风断裂以东大别山区的英山、罗田、浠水、蕲春、麻城、 广济等县。全群为中压区域动力热流变质岩系,未见底,顶被红安群不整 合覆盖,厚 23900~27300m。由普遍混合岩化的斜长角闪岩、斜长片麻岩、 二长片麻岩、变粒岩以及少量磁铁角闪岩、磁铁石英岩、大理岩组成,构 成大别山穹隆的主体及浠水褶皱束中各背斜之核部。红安群(Pt₂hn)分布 于浠水县西部沿长江北岸地区,蕲春县孙冲-英山县南冲一带,为一套中-高压区域变质岩系,不整合于大别山群之上,顶被上震旦统覆盖,厚约 3307-7888m。由片麻岩、片岩及少许千枚岩、石灰岩、大理岩、磷锰矿及 钇矿层组成,构成红安、浠水等褶皱束中各背斜翼部或向斜核部。

震旦系至古生代地层,除志留系属一套为陆缘碎屑建造外,其余都为 滨海-浅海相碳酸盐岩和碎屑岩。其中震旦系、寒武系、奥陶系发育为一套 浅海相白云岩、灰岩、泥灰岩,总体厚度约1500~1700m,其中奥陶系三叶 虫化石较为发育。志留系为一套类复理石砂页岩沉积,总厚度约
1079~1341m。泥盆系 - 下二叠统为灰岩、泥灰岩沉积,至上二叠统过渡为 泥页岩沉积,总体厚度约 212~524m。

三叠系中-下统地层,以灰岩、泥页岩等碳酸盐岩沉积为主,上部逐渐过渡为以碎屑岩为主夹碳酸盐岩的沉积。出露厚度约 340~700m。

上三叠统至下侏罗统地层,为一套砂页岩及含煤建造,中-上侏罗统为 湖相红色碎屑岩建造。其中侏罗系地层在本区呈北东-南西向条带状展布, 总体厚度1000余米,顶部存在一套火山碎屑岩段沉积,以安山岩-流纹岩中 酸性喷出岩类为主,厚度约520m。

白垩系至新近纪地层,岩性及沉积建造类似,不好区分。《1:20万蕲春 幅区域地质调查报告》及《湖北省区域地质志》将其统归为东湖群,属为 一套厚层内陆河湖相红色碎屑沉积,与前白垩纪地层不整合接触。该套地 层在本区分布较广,厚度约1800~2000m,下部以紫红色粉砂质泥岩及含砂 质粉砂岩为主,厚约200~300m;上部以灰色细砾岩,向上过渡为中-粗砾 岩为主,厚约1600~1700m。

第四系在研究区范围内发育良好。近场区地势平坦,河流成网,湖泊 也较为发育,表现为冲-湖积平原型地貌特征。广泛发育第四系沉(堆) 积物,以冲洪积物为主,最厚可达160~170m。

上述各套地层之间,大都呈整合或假整合接触,角度不整合只出现在 上下元古界、震旦系与元古界、侏罗系与前侏罗系、白垩系和侏罗系、第 四系与老地层之间。

近场区脉岩较发育,主要为酸性和基性,以花岗岩脉和石英岩脉最为 发育,其次为二长岩脉、二长花岗斑岩脉、煌斑岩脉等。在襄樊-广济断 裂带展布范围内可见一系列与断裂走向一致的北西向条带状岩脉。

66

图 3.1-1 近场区地震构造图

3.1.2 地质构造特征

目标区所在区域的大地构造位置属扬子准地台下扬子台褶带的西端, 现今保留的构造形迹主要为燕山运动时期形成的近东西向褶皱构造和近东 西向、北东向、北西向的断裂构造,喜山运动对前期形成的构造进行了继 承和改造,但整体构造格架未发生大的变化。

近场区的基底主要由早元古代至晚元古代中深变质岩系及侵入其间的 岩浆岩组成; 沉积盖层出露齐全,从震旦系至第三系均有出露。各系地层 之间大都呈整合或假整合接触,不整合仅见于上下元古界、震旦系与元古 界、侏罗系与前侏罗系、白垩系和侏罗系、第四系与老地层之间。与此相 对应,本区主要经历了三次较强烈的构造运动,分别为震旦纪前的晋宁运 动、侏罗纪末的燕山运动和古近纪 - 新近纪期间的喜山运动。晋宁运动基 本形成统一的地台基底,而现有的构造格架基本定型于燕山运动引起的沉 积盖层的褶皱和断裂,喜山运动后,全区转入新构造运动的整体上升阶段。

3.2 近场区新构造运动

3.2.1 新构造地貌

近场区在区域地貌上属于鄂东南丘陵地貌(图 3.2-1),西南侧为幕阜山 脉北部的余脉,东北侧为大别山东南麓余脉,以"盆岭相间,南高北低" 为总体特征,即由南往北,一系列近东西向展布的山岭与线状低地交替展 布。总体海拔在 10~400m 左右。项目区位于长江西南侧,距离长江约 10km 左右,项目区北侧与黄石市区南侧之间发育有近东西向小型丘陵山系,海 拔标高在 400m 以上,项目区南侧,地势较为平坦,沿大冶湖两岸展布小面 积的冲积平原。场地野外调查显示包括长江在内的各主要河流两岸均有基 岩出露, 第四系分布有限, 厚度较小, 显见全区地貌过程以风化侵蚀作用 为主。

3.2.2 新构造运动特征

近场区新构造运动具有继承性、新生性及间歇性的特点。近场区大地 构造位置处于扬子地台中部偏东,并处在下扬子台褶带与江南台背斜的过 渡带上,其地质发展不仅收此两个次级构造单元的控制,毗邻的华南地台 与中朝地台对其也有不可忽视的影响。新构造活动期以来,本区仍被不同 性质的新构造单元所围限:北东为大别断块抬升区,大别山在古近纪相对 抬升,到新构造期依然在抬升;西为江汉强烈沉降区与洞庭断陷盆地则继 承了前期的沉陷,不过新构造期的这种隆起和沉降,与早期也有明显差别;

此外,区内多级夷平面和多级河流阶地表明,新构造运动明显具有间

歇性或阶段性,导致多次侵蚀期和沉积期的转变。从夷平面和阶地的相对 高程越来越小看,其运动幅度越来越小。

综上所述,区域在新近纪整体缓慢隆升,经受强烈剥蚀均夷形成分布 广泛的准平原,而后地壳块断差异升降活动导致准平原解体,盆地下沉, 山地抬升,从而塑造了现今的构造地貌景观。

3.3 近场区主要断裂活动性

近场区内断裂相对发育,按断裂走向划分,大体可以分为北东向、北 西向两组,重点对近场区距离场址最近的襄樊-济断裂带、蕲州断裂和阳 新断裂进行了调查,现对近场区发育的主要断裂进行活动性分析(表 3.3-1)。

表 3.3-1

近场区主要断裂简表

					•	
序号	断层名称	产状	区内断 层长度 (km)	断层性质	错断地层	活动时 代
F1	走马岗断裂	$320^{\circ}-60^{\circ}/\text{SW}$, SE $\angle 60^{\circ}-70^{\circ}$	40	逆断层	Ar, Pt	前Q
F2	汤铺岭断裂	320°/SW∠30°-75°	33	逆断层	Ar, Pt, γ	前Q
F3	蕲州断裂	320°/SW∠40°-60°	50	逆断层	Ar _ν γ	Q ₁₋₂
F4	襄樊-广济断裂	30-40°∠50°-60°	70	正断、逆	K-E	Q ₁₋₂
F5	茅江断裂	$320^{\circ}/\mathrm{SW} \angle 60^{\circ}$	43	逆断层	Ar, Pt, γ	前Q
F6	阳新断裂	$320^{\circ}/\text{NE} \angle 60^{\circ}-70^{\circ}$	80	正断、逆断	Mz	Q ₁
F7	麻城-团风断裂	NNE \angle 60°-70°	70	走滑/正断	Ar/K-E	Q ₁₋₂
F8	大冶湖北缘断裂	193°∠70°	5	正断	Pz-Mz	前Q

3.3.1 襄樊 – 广济断裂

"襄樊-广济"断裂也称为"青峰-襄樊-广济"断裂,其横穿湖北 省中部,西侧延入四川省,与城口断裂相接;湖北境内起于竹溪的丰溪,向 东经竹山县的官渡镇、房县、青峰镇、谷城玛瑙观、茨河镇、襄樊市、随 州市的双河镇、洪山镇、三里岗镇、京山县的三阳镇、应城市、武汉市北、 黄冈市、浠水、广济一线分布,至黄梅一带,向北东方向延入安徽境内, 湖北省内全长约 700km。在近场区西起华容,经黄州、燕矶,在马龙与蕲 州断裂相交,长约 50km。断层倾向北东,倾角约 60~70°,具有正断、逆 断性质。

如图 3.3-1 (a) 所示,该断裂出露点位于鄂州下游约 10km 江边,泥盆 系石英砂岩与东湖群 (K₂-E) 泥质砂岩呈逆断接触,构成江边矾头,形成 高程 46.4m 的基岩残丘,高程 40m 左右,延伸约 7.5km。据此走向,该断 裂可能西延至鄂州与黄州之间的江中(江中尚有泥盆系石英砂岩构成的礁 山)。此外,残丘顶部上复以中更新棕红色黏土,夹含少量碎屑岩块和小圆 砾。

1. 第三-白垩系东湖群下段; 2. 泥盆系上统五通组; 3. 砾岩; 4. 泥质粉砂岩; 5. 玄武岩脉; 6. 断层角砾岩; 7. 断层泥; 8. 玄武岩; 9. 采样点及标注; 10. 断层

次级断层 f_a 、 f_b 组成主断层带,产状 40° \angle 65~70°, f_c 为低序次冲断层, 产状 120° \angle 60°。图 3.3-1(a)中:①为靠近 f_c 上盘处的碎裂岩麋棱岩和褐 黄色断层泥,断层角砾岩砂化带再度密集破碎;②为暗灰黄色片状构造岩, 间夹砂化碎裂岩透镜面与层面一致。③为剪压滑动带,以滑褶为特征,揉 皱强烈。④与②相同。⑤靠近 f_a 下盘断面处发育与断层直交的张性裂面, 呈弧形弯曲、擦痕和阶步水平,亦左旋兼上冲分量。⑥为杂色主构造岩带, 宽约 6m,因江水洗刷而出露 3m。紧贴着 f_a下盘断面处见有宽约 140cm 的 玄武岩脉,其中有捕虏体,原岩为红层砂岩,经后期剪切变形或被剪裂后 改造为透镜体,捕虏体大者长轴约 50cm,小者 20~30cm,尚有一系列 5~ 10cm 者。红层烘烤边效应极为清晰,呈紫灰色片理化结构相邻的构造岩为 紫红色,浅黄色条纹片理化断层泥,间夹玄武岩细脉,含砂质断层角岩碎 块,通常砾径约 5cm 以下,或被改造成微透镜体,或被剪切错断。⑦为固 结的断层角砾岩。此外, f_a下盘红层中侵入的玄武岩脉被一系列剪节理右旋 错断,总错断距约 2.5m,剪节理产状:倾向 100°,倾角 50°。

如图 3.3-1 (b) 所示,为襄樊 - 广济断裂主断层带局部观察点(照片 3.3-1)。该点位于鄂州市榨铺脚北约 100m 长江沿岸基岩处,呈基岩江岸,紫红色厚层至块状东湖群(K₂-E) 泥质粉砂岩与块状灰白色泥盆系五通组 (D₃w) 砾岩呈逆断层接触。

照片 3.3-1 鄂州市燕矶镇榨铺脚襄樊一广济断裂地质特征(镜向 NE) 点处可观察到 D₃w 逆冲到 K₂-E 之上,靠近东湖群砂岩的一侧可清晰辨 别断面,测得产状 <u>f₂</u>: 43°∠74°,断面附近发育紫红色,局部为黄褐色的断 层泥和断层角砾岩,整个破碎带宽约 10~15m,断面可观察到褐铁矿化。在断层破碎带中可见透镜体状玄武岩,发育气孔构造。受断层运动影响,透镜体状玄武岩发生剪切旋转,在其周边发育片理化带。点 NE 方向为厚层至块状五通组石英砾岩,在 f₂向 35°方向约 20m 处发育宽约 2~3m 的断层破碎带,构造岩呈灰黄色、紫红色至杂色。构造角砾均为石英质,大小不一,无磨圆呈棱角状,部分构造角砾岩比重大。

在东湖群地层内部也发育有宽约 0.5~1m 的断层破碎带 f₁, 产状为: 42° ∠79°, 带内构造岩呈紫红色碎粉岩, 含少量断层角砾岩。五通组地层表现 出强烈地角岩化, 岩石非常坚硬。

在该点采样褐黄色断层泥 YP030~1 做 OSL 法鉴定,测得断层泥的年龄为 117.5 ± 15.7 万年,显示断裂在上新世末期至早更新世曾有显著活动,中 更新世活动频率不高。

综上所述, 襄樊 - 广济断裂带属早 - 中更新世断裂, 晚更新世以来没有断错地表层的新活动。

3.3.2 麻城-团风断裂

麻团断裂北起商城,向南经麻城、新洲、团风一带,长约 240km。断裂总体走向 NNE,麻城以北倾向 SEE,具有逆冲性质;麻城以南倾向 NWW, 具有正断性质,并兼有右旋走滑分量。根据断裂几何特征及活动性质大致 可以分为三段:北段为商城-麻城黄土咀,中段为黄土咀-团风,南段为 团风以南段。

中段北起黄土咀,向南经阎家河、白果、夫子河、旧街、淋山河,止 于团风(长江以北),延伸长约75km。断层在平面上呈NNE走向弯曲展布, 仅在麻城南局部呈向西凸出的弧形。本段断层倾向NWW,局部地段地质调 查显示,倾向E,倾角约在50°~75°之间,断裂在剖面上呈现陡倾,断面较 为平直。其中麻城-新洲盆地东缘地貌反差强烈,东侧为低山、低中山区, 西侧盆地内部为垄岗河流宽谷地貌。断层线性影像清晰,由硅化断层角砾 岩构成的断层三角面成排展布,并发育断阶状多级台地,台地前缘发育断 层河谷。阎家河-旧街之间,断裂右旋走滑造成水系具有右旋扭曲特征(图 3.3-2)。在阎家河南举水支流上这种特征更加清晰,举水支流从断裂东侧山 区流出,由于受地形控制,均向南弯曲汇入举水,但在汇入处受断裂影响 均表现出向北弯曲的弧形,断裂造成的水系扭曲位移达 2km 左右。

K2-E1 Pt 2 2 4 5 5 6 7 1 8
 图 3.3-2 麻城一团风断裂中段阎家河镇叶家湾地质剖面(徐卓民等, 1973 年)
 1. 第三-白垩系下段东湖群; 2. 元古界红安群; 3. 第四系残坡积物; 4. 含砂砾岩;
 5. 角闪斜长片麻岩; 6. 已胶结块状破裂; 7. 角砾岩及断层泥状透镜体; 8. 断层

沿断裂发育较大的破碎带,局部地段断面可见断层泥、断层角砾岩带。 断裂带为NNE向区域性断裂构造带,北起豫鄂边界的松子关,向南经麻城、 团风、咸宁和通山进入湖南省,全长近400km,在湖北省境内长度约280km。 该断裂带由一系列平行或斜列的断裂组成,在长江以北表现较明显。前白 垩纪时期,断裂带以压剪性活动为特征,发育较宽的糜棱岩和硅化岩带, 带内及旁侧有燕山期花岗岩分布,并经受强烈的动力变质,在长竹园附近, 其东盘北移现象明显。晚白垩世-古近纪时期,在区域引张作用的影响下, 控制了麻城-新洲断陷盆地的形成,并接受了巨厚的陆相红色碎屑堆积。 断裂带沿线有新生代溢流的玄武岩分布。第四纪时期,断裂继承性复活主 要表现为伸展构造背景下的构造隆升作用。断裂两侧地形反差较大,水系特征、河流阶地高程明显不同,水准测量地壳垂直形变大,基本显示张剪性特征。

据近代地震观测和现代地震宏观调查,麻城-团风断裂带北段地震活动 强烈,共发生4次中强震,分别为1913年麻城5级地震,1925年商城5级 地震,1932年麻城黄土岗6级地震和1959年潢川5级地震。调查表明:与 麻城6级地震同期,在新洲、宋埠一带尚有几次有感震。此外,在麻城-团风断裂与襄樊-广济断裂交汇地带附近曾发生黄冈1633年4¾级、1640 年5.0级地震。综合上述,判定北北东向麻城-团风断裂带为早-中更新世 断裂。

3.3.3 阳新断裂

1) 石宛寺剖面

在阳新县大王镇石碗寺西公路山坡处(照片 3.3-2),阳新断层接触带出露于石炭系黄龙群(C₂hn)灰岩与中志留统坟头群(S₂fn)砂质页岩中(图 3.3-3)。

照片 3.3-2 石宛寺阳新断裂构造特征

1.石炭系中统黄龙群; 2.志留系中统坟头组; 3.灰岩; 4.斜长角闪片麻岩; 5.断层

该点北为(C₂hn)黄龙群灰岩,呈暗青-青灰色,表面溶蚀强烈,垂直 裂隙较为发育;该点南为(S₂fn)坟头群砂质页岩,粉砂岩,岩石破碎强烈, 层理不甚明显,表面多风化,风化面呈暗黄色,新鲜面为暗绿色,产状为0° ∠80°。断层接触带内充填有碎粉岩与暗黄-土黄色断层泥,带内破碎明显, 带宽约0.5~1m,产状为83°∠42°。经地层接触新老关系及产状判别该断 层活动性质为正断层。

2) 陈堡村剖面

阳新断层破碎带出露于陶港镇陈堡村 SW 约 1km 两山顶鞍部大路边坡 (照片 3.3-3),该点北为三叠系中厚层状青灰色灰岩,岩石中等风化到微风 化,岩层内部发育揉皱,该点南为中二叠统灰绿色、杂色粉砂岩,泥质粉 砂岩,岩石强风化至中等风化,发育强烈变形的褶皱,岩石十分破碎。

照片 3.3-3 陈堡村阳新断裂构造特征

76

在灰岩内部发育有宽约 7m 的断裂破碎带 (f_1),内部构造岩为碎裂岩,构造岩呈砖红色至杂色,部分构造角砾呈透镜体 (图 3.3-4),测得 f_1 产状 21° \angle 51°,上盘地层产状 183° \angle 42°,下盘地层产状 15° \angle 24°,推 测为逆断层。两地层间为逆断层接触,形成的断裂破碎带宽约 30m,构造 岩分为碎裂岩和碎粉岩,但内部结构十分混杂,构成构造岩的下部多为灰 岩成分,上部多为砂岩成分。测得 f_2 :①195° \angle 35°;②220° \angle 55°。断 层上、下盘岩石均破碎十分严重,上盘粉砂岩发育被断裂拖曳的褶皱,判断该断裂为逆冲断裂。 f_1 和 f_2 均未切割第四系,沿断层方向在地貌上未见陡 坎,判断为前第四系断层。

 ^{1.} 三叠系下统大冶组; 2. 二叠系上统大隆组; 3. 灰岩; 4. 泥质粉砂岩; 5. 断层角砾岩; 6. 断层
 3) 四架门楼剖面

在太子镇四架门楼 190°方向约 1.5km 山顶大路旁,阳新断层出露于下 三叠统大冶组(T₁dy)中层至厚层状青灰色灰岩中(照片 3.3-4),岩石呈中 风化至微风化,表层堆积少量的砖红色风化土壤和残坡积块石。

该点处灰岩中发育宽约 20~25m 的断裂破碎带(图 3.3-5),带内发育构造角砾岩,角砾全部为灰岩,大小混杂,大者可达 60cm×20cm,小者多为 0.5×3cm,全部为棱角状,岩石内部发育大量的方解石脉体,分布无明显规 律。破碎带表面风化成灰褐色。点处断裂所过的地貌呈两边基岩稍高,破碎带低的槽状垭口,两侧地层产状为 146°∠51°,断层产状 270°~290°(走

向),倾角 50°~60°。断裂下盘发育两组擦痕次级断层,测得擦痕产状如下 ①160°/77°NE(Pi)3°SE(D); ②170°/74°NE(Pi)8°SE(D); ③165°/80°NE (Pi)1°SW(D); ④165°/80°NE(Pi)45°SEW(N)正断层右行。

综上所述,据近北北西向阳新断裂在近场区范围内的构造发育特点、 地形地貌特征及与不同层状地貌的相互关系,初步认为该断裂为早-中更 新世断裂。

3.3.4 蕲州断裂带

该断裂为襄樊广济断裂带内主要的主干断裂,近场区内断裂北西端始 于丛林湾附近,向南经龟山湾、铁铺湾、佐家湖、王氏湾、寿塘湾、朱家 咀、铁铺祠堂、井家楼、纵盆咀等地。断裂延伸长度约 60km,断裂总体走向 NW320°,倾向 SW,倾角 40°~60°,逆断层性质兼具右旋剪切运动特征。 断裂由多条次级断层组成,断层破碎带较宽,约数十至上百米,成为太古 界大别群黑云斜长片麻岩、角闪斜长片麻岩、斜长角闪岩、二长片麻岩和 二长变粒岩与古近系-白垩系东湖群砾岩、砂砾岩、砂岩和粉砂岩的接触 边界。该断裂在走向上不连续,常被北东向断层切割断错。断裂的北西段 构成了黄州盆地与低山丘陵的北东边界。

1) 龟山湾剖面

在兰溪镇龟山湾北东 500m 天然凹坑处, 断层发育在大别群飞虎山组下段(Arfh¹)地层之中(照片 3.3-5)。表现为高约 50m 的断层面, 断层上盘大部分被人工开挖。

照片 3.3-5 龟山湾蕲州断层断面构造特征

(肠状构造镜向 340°;石英脉镜向 320°;断面镜向 0°;左行擦痕镜向 70°)

断层上、下盘岩性均为灰黑色黑云斜长片麻岩,角闪斜长片麻岩(图 3.3-6),受混合岩化作用影响,地层中发育黑白相间的条带状构造,发育肠 状褶皱,可见数条石荚脉,脉宽 30~50cm,断面产状 245°∠58°,断面上可 见左行擦痕,侧伏角为 2°,侧伏向 NW,面理产状 S₁: 249°∠71°。断层未 切穿上覆第四系,判断该断层为第四纪不活动断裂。

2) 铁铺湾剖面

在铁铺湾西边公路旁,断层出露于太古界大别群飞虎山组下段(Arfh¹) 灰白、灰色斜长角闪片麻岩之中(照片 3.3-6)。

照片 3.3-6 铁铺湾蕲州断裂构造特征(断层远观镜向 0°, 左行擦痕镜向 50°)

露头处可见多组近平行的断面,整个断层破碎带宽约 35~40m(图 3.3-7), 断面弯曲波状,表面粗糙。可在断层表面观察到断面活动时形成的石荚膜, 石荚膜表面发育有擦痕和阶步,测得一断面的产状为 246° ∠ 52°,擦痕侧伏 角 6°SE,判断运动性质为左行走滑。断面上盘一侧破碎较严重,岩石风化、 崩落多呈负地形。断层破碎带两侧岩石多呈中等风化状态,较为破碎,两 侧地层的产状(面理)较为陡倾。另一断面产状测得为 285°∠80°, 擦痕侧 伏角 7°SE。

1.太古界大别群飞虎山组; 2.角闪斜长片麻岩; 3.断层角砾岩; 4.断层

3) 佐家湖剖面

位于浠水县佐家湖西破桥村附近山坡处的大别期-晋宁期黑云二长花岗 岩,出露蕲州断层露头(照片 3.3-7),靠近坡顶处为强风化层,破碎强烈, 向下逐步过渡为中等风化层,垂直裂隙发育,中等风化层内含暗绿-灰绿色 捕虏体。

照片 3.3-7 佐家湖蕲州断层断面构造特征(断层面远观镜向 74°)

岩体内发育一条近 SN 向断层, 断层面平直, 断层近直立, 主断面产状 260°∠76°。受风化作用影响, 断层上盘已被完全风化破坏, 断面主要出露 在中风化层内, 全风化层内未剥露出断面。该断裂带内除主断面外, 还发 育数条相同走向的次级小断层。其中,主断面上发育有摩擦导致的紫红-暗 红色锰铁质镜面,擦痕构造偶有残留,但断层运动性质不明。

1.大别期-晋宁组; 2.黑云二长花岗岩; 3.碎裂岩; 4.断层

该断裂带未切断坡顶第四纪砂砾层及黄土堆积,推测该断层活动性较弱,为前第四纪断裂。

4) 王氏湾剖面

在王氏湾东约100m大广高速旁人工开挖边坡处,蕲州断层出露于太古 界大别群飞虎山组下段(Arfh¹)暗绿色角闪片麻岩与晋宁期片麻状二长花 岗岩中(照片3.3-8)。

照片 3.3-9 王氏湾蕲州断层构造特征(镜向 340°)

点西片麻状二长花岗岩呈浅肉红色,细粒他形粒状结构,中风化,岩 石内部两组明显的相互交切的节理,产状分别为 $60^{\circ} \angle 45^{\circ}$,330° $\angle 74^{\circ}$;点 东为角闪片麻岩呈暗绿色、紫红色,中等风化,较为破碎。片麻状花岗岩 内发育两条与接触带近乎平行的断面(图 3.3-9),其中东侧主断面产状为 278° $\angle 52^{\circ}$,沿断面内发育灰黑色泥质碎裂岩。其中沿该主断面向北坡后发 育相似走向的断面,断面上发育数组右行走滑擦痕,产状分别为① 305°/36°SW,Pi40°SE(D);②315°/30°SW,Pi34°SE(D);③315°/30°SW, Pi34°SE(D)。另外,片麻状二长花岗岩内发育一近东西向的断层破碎带 f_2 , 切过近 NW 向的断层 f_1 ,破碎带内发育较明显的断层角砾岩,胶结较好。 f_2 断层破碎带产状为175° $\angle 54^{\circ}$,活动时代较晚,晚于 f_1 活动时期。

5) 朱家咀剖面

位于兰溪镇龟山湾北西朱家咀东 200m 开挖边坡处(照片 3.3-9),为蕲 州断层观察点。

断层上、下盘岩性均为大别群飞虎山组下段(Arfh¹)灰黑色黑云斜长 片麻岩,灰白色角闪斜长片麻岩,地层呈强风化~中等风化状态,靠近断层 破碎带岩石多呈强风化状态,受构造作用影响,岩石多沿片麻理破碎。断 层带宽约 5~6m, 主断面产状 245° ∠48°, 断层带内发育 4 条次级断裂(图 3.3-10)。其中 *f*₁、 *f*₃ 断层面呈波状起伏不平直,内部发育构造透镜体,构造 岩主要为暗红色、紫红色断层泥,产状为 *f*₁: 225° ∠46°, *f*₃: 215° ∠54°, *f*₂、 *f*₄厚度较薄,构造岩主要为断层泥,产状 *f*₂: 210° ∠49°, *f*₄: 210° ∠56°。据 主断层上发育的两组擦痕指示,擦痕①245° ∠69°,侧伏角 SE (i),②260° ∠74°,侧伏角 87°NW (i),该断裂晚期呈逆冲性质。在点西 20m 处农田陡 坎可见与点处类似的构造发育,沿断层走向 340°,露头长约 65m,以上断 层均未切断上覆第四系。

在断层破碎带内上采集暗红色断层泥样品,测得断层泥年龄为217.8± 12.3 万年(YP019-1)、235.4±12.8 万年(YP019-2)、245.9±13.8 万年 (YP019-3)。显示该断裂在中更新世有强烈活动,晚更新世和全新世不活动。

6) 寿塘湾剖面

在寿塘湾南东150m人工开挖处,断层出露于太古界大别群飞虎山组下段(Arfh¹)黑云母斜长片麻岩中(照片3.3-10),岩石整体呈中等风化,受构造影响破碎严重,岩石风化面呈铁锈色,暗红色,整体不显面理。

照片 3.3-10 寿塘湾蕲州断层构造特征 (镜向 0°)

露头处不连续发育宽约2.5~3m的构造破碎带,破碎带内发育有破裂岩, 断面弯曲,面粗糙(图 3.3-11)。主断面附近一般都伴有次级断面,次级断 裂内的碎裂岩呈土黄色,与原岩明显不同,近距离观察,两者岩性一致, 受风化作用影响,断层上盘剥蚀严重。测得主断裂的产状 *f*₁: 246°∠75°; *f*₂: 240°∠79°,垂直该断面发育多组铅直节理,产状: J₁: 170°∠80°; J₂: 180°∠78°。

7) 铁铺祠堂剖面

位于浠水县兰溪镇铁铺祠堂 SW 省道 201 北约 100m 人工开挖边坡处, 蕲州断层出露于晋宁期黑云母二长花岗岩中,岩石风化破碎强烈,成碎粉状,风化面呈淡桔黄色-肉红色(照片 3.3-11)。

照片 3.3-11 铁铺祠堂蕲州断层构造特征 (断层剖面镜向 350°, 断层泥取样镜向 355°)

花岗岩基岩内发育一较宽断层破碎带,破碎带宽度约 3~4m,带内含较多破碎透镜体,由上至下呈左阶排列(图 3.3-12)。透镜体宽约 20~30cm,

长度约 70~80cm,根据透镜体排列及分布样式推断该断层破碎带性质为逆 冲断层。该断裂带由于发育较宽,对其发育平均产状测定为走向约 340°, 倾角 70~75°,倾向 SW,属蕲州断裂带内出露较为明显的断裂破碎点。于 破碎带内近紫褐色断层泥中采样 YP024-1,做 OSL 测试,测得断层泥的年 龄为 115.9 ± 14.5 万年。显示该断裂在中更新世有过活动,全新世不活动。

8) 洪家祠堂剖面

在洪家祠堂西 200m 山坡处, 蕲州断层出露于大别群飞虎山组下段 (Arfh¹) 地层之中 (照片 3.3-12)。

^{1.}大别期-晋宁组; 2.片麻状黑云母花岗岩; 3.断层角砾透镜体; 4.断层泥; 5.第四系腐殖土; 6.逆断层; 7.采样点及标注

此处发育两条近直立断层破碎带,其中基岩风化强烈,靠近坡顶处处 于全风化状态,靠近地表部分为中风化状态,颜色呈浅桔黄色-肉红色,较 为疏松。断层破碎带 f₁宽约 50cm (图 3.3-13),内部主要充填破裂岩,部分 填充碎粉岩,颜色呈灰绿 - 暗灰色,内部垂直劈理(叶理)发育。根据断 裂带产状推断该破裂带性质为走滑兼挤压性质。f₁实测产状为:走向 345°, 近直立,倾角 88°,破碎带 f₂宽约 1m,内部充填灰绿-暗灰色碎裂岩,断层 性质不明。f₁与 f₂均未切穿上覆第四纪覆盖层,推断为前第四纪断层。

照片 3.3-12 洪家祠堂蕲州断层剖面(镜向 345°)

9) 井家楼剖面

位于井家楼南东约 300m 采石场,为蕲州断裂观察点,断层发育在大别 群飞虎山组下段(Arfh¹)地层中(照片 3.3-13)。

开挖边长约 300m,点处仅可见断层下盘,上盘被风化剥蚀,断层上盘 为一套杂色、浅黄色黑云斜长片麻岩,中等风化,顶部破碎强烈,面理产 状120°∠27°。断层下盘为较大断层面(图 3.3-14),走向 330°,倾向 SW240°, 倾角 74°,断层面上可见明显擦痕及阶步构造,擦痕侧伏角 16°,侧伏向 SE, 根据阶步及擦痕性质反映该断层为右行走滑性质。沿断裂垂直方向发育多 组节理,节理近直立。沿断层走向未见陡坎,未见河流位错,未切断第四 系地层,判断为非活动性断层。

1.第四系湖积层; 2.太古代飞虎山组; 3.角闪斜长片麻岩; 4.断层

综上所述,据蕲州断裂在近场区范围内的构造发育特点、地形地貌特征及与不同层状地貌的相互关系,初步认为该断裂为早-中更新世断裂。

3.3.5 巴河断裂

近场区内为巴河断裂南西段,断裂展布东北边缘部,向北东方向延出 区外。对于整条断裂带而言,主断裂沿巴河两岸呈左旋斜列展布,总长约 75km。走向 NE30~40°,断面倾向北西或南东,倾角 70~80°。在罗田三里 畈以北断裂地表形迹清楚,在墩上附近被南北向断层转换后,南段主断裂 多被掩盖。在上巴河右岸,主断裂带发育于大别群混合岩和角闪石片麻岩 中,并以30m宽的破裂带形式产出,产状330°∠80°。多期变形的碎裂岩带 切割了所有的地质体,与主带平等的剪破裂局部充填有较新鲜的断层泥物 质,或者再破裂变形造成片状糜棱化岩。根据相关地质体分布,可以认为 巴河断裂形成于燕山期后或者早喜马拉雅期,具有斜滑兼左旋挤压性质。 第四纪以来以右旋兼拉张占优势,但南北两段表现不一。罗田三里畈段因 拉张出现两处间歇性温泉群,水温最高达 63~75°C,并沿断裂左行雁列排布 成相应的两个等温高值区,长度分别为 1400m 和 1000m。在北段断裂带也 是西侧构造剥蚀的低丘(200m)和东侧侵蚀堆积地貌(50m)的分界线。 南段即上巴河至黄州,沿断裂带发育巴河的侵蚀堆积河谷,但西盘仍保持 了较高的抬升趋势。

近场范围内断层主要发育于太古界大别群变质岩系和元古界变质岩系 地层之中。断裂南西端始于孙家咀附近,向北东经石头湾至上巴河镇延出 区外。在区内断裂延伸长度约 12km。断裂总体走向 NE30°,倾向 NW, 倾角 50°~70°,表现为正断层性质,断层破碎带宽度各处不一,一般在几米 到数十米不等,断裂常由多条次级断层组成,

地貌上,沿断裂构造地貌特征表现的并不十明显,沿断裂展布上未见 断层陡坎、线性沟槽等,不过局部地段断裂对巴河的流向具有一定的限定 作用。

1633 年 4¼级和 1640 年 5.0 级地震均发生在断裂南端, SEM 法测年结 果表明该带在上新世和中更新世分别有强烈活动(武汉地震工程研究院, 2006 年)。

石头湾剖面:在团风县上巴河镇石头湾村委会南西约 50m 砂石料堆场。

90

巴河断层出露于太古界大别群麻桥组上段(Arm²)黑云斜长片麻岩及 肉红色二长片麻岩之中(照片 3.3-14),此处发育宽约 2~3m 的断层破碎带, 破碎带东侧发育其次级小断层(图 3.3-15)。

照片 3.3-15 石头湾巴河断裂构造特征(镜向 SW)

断层上下盘岩性为 Arm²黑云斜长片麻岩及肉红色二长片麻岩。岩石的 片理产状为 230° ∠58°,受构造影响,岩石中发育较多的裂隙,岩石较为 破碎,断裂内的构造岩为碎裂岩,部分为碎粉岩。部分上盘地层卷入断裂 破碎带,呈透镜体状,断层断面呈波状,破碎带上窄下宽。次级断层明显 错断肉红色二长片麻岩, 断距约 1.5m, 断面较平直, 断层性质表现为正断层, 主断层破碎带将二长片麻岩错断约 4~5m, 表现为正断性质。

综上所述,根据巴河断裂的构造特征和构造地貌发育特点,结合北西向蕲州断裂与其的相互切割关系,初步判断巴河断裂属早-中更新世断裂。

3.4 近场区地震活动特征

3.4.1 近场区地震活动

1) 近场区历史地震活动

近场区已知有4次破坏性地震记录,表3.4-1为近场区破坏性地震目录, 图 3.4-1为近场区破坏性地震震中分布图,其中位于黄冈附近的两个历史地 震经纬度相同,故图中只投出3个地震震中。

图 3.4-1 近场区破坏性地震震中分布图(319~2019 年 12 月, M≥4.7)

<u></u> <u></u> - п	发震时间		震中	位置	震源深度	54	震中烈	
序亏	年-月-日	纬度/0	经度/0	参考地名	-精度	/km	震级	度
1	1629-04	30.3	115.1	湖北黄冈蕲州间	2		4¾	VI
2	1634-03-26	30.5	114.9	湖北黄冈			5	
3	1640-09	30.5	114.9	湖北黄冈	2		5	VI
4	1897-01-05	29.9	115.2	湖北阳新	2		5	VI

表 3.4-1 近场区破坏性地震目录(319~2019 年 12 月, M≥4.7)

2) 近场区现代地震活动

自 1970年后,随着地震台网的建立和不断完善,对近场区地震监测能力逐步提高,表 3.4-2 为近场区现代小震目录,图 3.4-2 为近场区地震震中 分布图 (包括历史地震 M≥3½和现今地震 M≥1.0)。

表 3.4-2

近场区现代小震目录(1970~2019 年 12 月 M≥1.0)

始旦	发震时刻	震中位置		震源深度	電 切 (M)	
细ろ	年-月-日	纬度/0	经度/0	/km	辰级 (M)	
1	1972/1/12	30.03	114.53		1.7	
2	1972/9/12	29.9	115.4		4.0	
3	1972/10/28	30.2	115.28		1.6	
4	1974/10/21	30.25	115.08		1.5	
5	1975/2/17	29.9	114.58		1.4	
6	1975/3/31	30.18	115.17		1.3	
7	1975/4/2	29.85	114.9		1.3	
8	1975/4/15	29.92	114.57		1.2	
9	1979/4/20	30.03	115.13		1.9	
10	1979/6/13	30.42	114.5		2.0	
11	1979/12/22	29.97	114.78		2.2	
12	1982/7/24	30.12	115.18		1.2	
13	1983/6/14	29.88	114.75		1.2	
14	1984/9/20	30.02	115.5		1.3	
15	1985/3/16	30.17	115		1.4	
16	1985/5/6	29.9	114.5		1.7	
17	1989/9/6	29.93	114.82		1.6	
18	1989/11/23	30.03	115.05		1.2	
19	1991/8/25	30	115.22		2.0	
20	1991/9/30	29.93	115.43		1.6	
21	1992/9/25	29.9	114.58		3.0	
22	1994/11/25	30.08	115.07		1.2	
23	1995/12/16	30.18	114.97		1.4	
24	1997/8/31	29.93	114.73	10	1.5	
25	1998/4/2	30.09	115.39	9	1.5	
26	1998/5/25	30.14	114.69	10	1.6	
27	1999/7/4	30.05	115		1.1	
28	1999/8/5	29.94	114.62		1.1	
29	1999/8/10	29.97	114.92		1.6	
30	2001/5/19	30.07	115.33		1.2	

山田	发震时刻	震中	位置	震源深度	雷切 (11)	
编亏	年-月-日	纬度/0	经度/0	/km	莀级(M)	
31	2002/2/9	30.07	114.57	12	1.6	
32	2003/3/27	30.07	114.9	8	1.9	
33	2003/12/20	30.23	115.02	5	1.4	
34	2005/11/6	30.13	114.98	14	1.3	
35	2007/12/27	29.9	114.68	7	2.4	
36	2007/12/27	29.88	114.67	12	1.3	
37	2007/12/30	29.83	114.7	9	2.1	
38	2008/8/7	30.03	115.4	8	2.1	
39	2009/6/5	30.22	115.07	7	1.6	
40	2009/6/6	30.05	114.8	7	1.1	
41	2010/2/13	30.17	114.82	6	1.2	
42	2010/3/23	30.15	114.82	8	1.3	
43	2010/4/8	30.11	114.79	8	1.3	
44	2010/5/28	30.13	114.8	9	1.1	
45	2010/7/9	30.17	114.78	9	1.4	
46	2010/8/6	30.17	114.82	7	1.4	
47	2010/9/14	30.18	114.78	6	1.1	
48	2010/9/19	30.13	114.8	6	1.1	
49	2010/10/4	30.13	114.82	7	1.4	
50	2010/10/10	30.22	115.1	6	1.2	
51	2010/10/10	29.98	115.4	6	1.1	
52	2010/10/15	30.13	114.82	8	1.3	
53	2010/12/22	30.15	114.8	6	1.4	
54	2011/1/12	29.98	115.37	4	1.1	
55	2011/1/19	30.15	114.82	6	1.5	
56	2011/1/25	29.98	115.38	6	1.2	
57	2011/3/4	30.13	114.82	9	1.3	
58	2011/4/18	29.83	115.43	6	1.1	
59	2011/4/25	30.2	114.78	7	1.1	
60	2011/5/12	29.83	115.5	6	1.1	
61	2011/5/15	30.13	114.78	1	1.4	
62	2011/5/29	30.17	114.82	8	1.3	
63	2011/6/7	30.13	114.78	8	1.4	
64	2011/6/22	30.15	114.78	7	1.4	
65	2011/7/3	30.13	114.82	6	1.4	
66	2011///15	30.13	114.78	1	1.3	
6/	2011/8/11	30.18	114.//	6	1.5	
68	2011/8/19	30.13	114.8	2	1.4	
<u>69</u> 70	2011/9/5	30.15	114.78	1	1.4	
/0	2011/9/30	30.13	114.82	6	1.4	
/1	2011/10/22	30.17	114.82	6	1.4	
12	2011/10/28	<u> </u>	114.82	0	1.4	
/ 5	2011/12/22	<u> </u>	114.82	0	1.3	
/4	2012/3/20	30.13	114./ð	4 7	1.3	
13	2012/0/13	<u> </u>	114.8	/ 7	1.2	
/0	2012/7/1	29.80	114.0	/ 7	1.9	
70	2012/ //25	29.9 20.16	113.3	1	1.3	
/0	2012/9/18	20.10	114.8	7	1.0	
17	2012/9/20	30.18	114./3	/	1./	

位日	发震时刻	震中	位置	震源深度	雨切 (11)	
编亏	年-月-日	纬度/0	经度/0	/km	莀玖(M)	
80	2012/11/5	30.15	114.8	6	1.4	
81	2013/4/6	29.84	115.44	6	1.2	
82	2013/8/7	29.95	115.49	6	1.9	
83	2015/2/7	30.19	115.06	7	1.3	
84	2015/2/10	30.19	115.06	6	2.3	
85	2015/4/26	29.93	115.45	8	1.5	
86	2015/8/7	30.07	115.27	6	1.1	
87	2015/10/25	29.9	115.5	6	1.4	
88	2016/6/2	30.192	115.064	6	1.7	
89	2016/8/14	29.97	115.454	8	1.2	
90	2016/8/18	29.932	115.453	6	1.3	
91	2017/4/21	30.287	114.908	5	1.5	
92	2017/8/19	29.94	115.46	7	1.2	
93	2017/11/6	29.93	115.47	7	1.2	
94	2017/11/25	29.86	115.378	8	2.1	
95	2017/11/25	29.887	115.39	5	1.6	
96	2017/12/26	29.99	114.93	6	1.2	
97	2018/4/28	29.92	115.45	3	1.1	
98	2018/5/27	30.42	114.84	8	1.1	
99	2018/8/22	29.89	115.47	0	1.3	
100	2018/8/28	29.93	115.47	6	1.1	
101	2018/8/31	29.93	115.46	7	1.2	
102	2018/9/7	29.93	115.45	6	1.3	
103	2018/9/24	30.37	114.91	5	2	
104	2018/9/28	29.92	115.46	6	1.2	
105	2018/10/16	29.92	115.46	6	1.5	
106	2018/11/2	29.9	115.46	8	1.3	
107	2018/11/15	30.06	114.98	9	1.6	
108	2018/11/25	29.92	115.47	7	1.3	
109	2018/12/28	29.94	115.46	7	1.3	
110	2019/1/2	29.92	115.46	5	1.6	
111	2019/1/13	29.91	115.46	5	1.5	
112	2019/1/19	29.84	115.44	7	1.6	
113	2019/1/19	29.92	115.48	6	1.6	
114	2019/1/24	29.92	115.47	7	1.6	
115	2019/8/19	29.93	115.46	8	1.6	
116	2019/8/27	29.93	115.45	6	1.4	
117	2019/10/3	29.83	115.43	6	1.4	
118	1972/1/12	30.03	114.53		2.5	
119	1972/9/12	29.9	115.4		4.5	
120	1972/10/28	30.2	115.28		2.4	
121	1974/10/21	30.25	115.08		2.3	
122	1975/2/17	29.9	114.58		2.2	
123	1975/3/31	30.18	115.17		2.1	
124	1975/4/2	29.85	114.9		2.1	
125	1975/4/15	29.92	114.57		2	
126	1979/4/20	30.03	115.13		2.6	
127	1979/6/13	30.42	114.5		2.7	
128	1979/12/22	29.97	114.78		2.9	

位日	发震时刻	震中	位置	震源深度	雨田 (11)	
编亏	年-月-日	纬度/0	经度/0	/km	辰玖(M)	
129	1982/7/24	30.12	115.18		2	
130	1983/6/14	29.88	114.75		2	
131	1984/9/20	30.02	115.5		2.1	
132	1985/3/16	30.17	115		2.2	
133	1985/5/6	29.9	114.5		2.5	
134	1989/9/6	29.93	114.82		2.4	
135	1989/11/23	30.03	115.05		2	
136	1991/8/25	30	115.22		2.7	
137	1991/9/30	29.93	115.43		2.4	
138	1992/9/25	29.9	114.58		3.6	
139	1994/11/25	30.08	115.07		2	
140	1995/12/16	30.18	114.97		2.2	
141	1997/8/31	29.93	114.73	10	2.3	
142	1998/4/2	30.09	115.39	9	2.3	
143	1998/5/25	30.14	114.69	10	2.4	
144	1999/8/10	29.97	114.92		2.4	
145	2001/5/19	30.07	115.33		2	
146	2002/2/9	30.07	114.57	12	2.4	
147	2003/3/27	30.07	114.9	8	2.6	
148	2003/12/20	30.23	115.02	5	2.2	
149	2005/11/6	30.13	114.98	14	2.1	
150	2007/12/27	29.9	114.68	7	3.1	
151	2007/12/27	29.88	114.67	12	2.1	
152	2008/8/7	30.03	115.4	8	2.8	
153	2009/6/5	30.22	115.07	7	2.4	
154	2010/2/13	30.17	114.82	6	2	
155	2010/3/23	30.15	114.82	8	2.1	
156	2010/4/8	30.11	114.79	8	2.1	
157	2010/7/9	30.17	114.78	9	2.2	
158	2010/8/6	30.17	114.82	7	2.2	
159	2010/10/4	30.13	114.82	7	2.2	
160	2010/10/10	30.22	115.1	6	2	
161	2010/10/15	30.13	114.82	8	2.1	
162	2010/12/22	30.15	114.8	6	2.2	
163	2011/1/19	30.15	114.82	6	2.3	
164	2011/1/25	29.98	115.38	6	2	
165	2011/3/4	30.13	114.82	9	2.1	
166	2011/5/15	30.13	114.78	7	2.2	
167	2011/5/29	30.17	114.82	8	2.1	
168	2011/6/7	30.13	114.78	8	2.2	
169	2011/6/22	30.15	114.78	7	2.2	
170	2011/7/3	30.13	114.82	6	2.2	
171	2011/7/15	30.13	114.78	7	2.1	
172	2011/8/11	30.18	114.77	6	2.3	
173	2011/8/19	30.13	114.8	2	2.2	
174	2011/9/5	30.15	114.78	7	2.2	
175	2011/9/30	30.13	114.82	6	2.2	
176	2011/10/22	30.17	114.82	6	2.2	
177	2011/10/28	30.13	114.82	6	2.2	

护卫	发震时刻	震中位置		震源深度	雪 切(M)
細子	年-月-日	纬度/0	经度/0	/km	辰玖(M)
178	2011/12/22	30.13	114.82	6	2.1
179	2012/3/20	30.13	114.78	4	2.1
180	2012/6/13	30.13	114.8	7	2
181	2012/7/1	29.86	114.6	7	2.6
182	2012/7/23	29.9	115.5	7	2.1
183	2012/9/18	30.16	114.8	6	2.4
184	2012/9/26	30.18	114.75	7	2.5
185	2012/11/5	30.15	114.8	6	2.2
186	2013/4/6	29.84	115.44	6	2
187	2013/8/7	29.95	115.49	6	2.6
188	2015/2/7	30.19	115.06	7	2.1
189	2015/2/10	30.19	115.06	6	3
190	2015/4/26	29.93	115.45	8	2.3
191	2015/10/25	29.9	115.5	6	2.2
192	2016/6/2	30.192	115.064	6	2.5
193	2016/8/14	29.97	115.454	8	2
194	2016/8/18	29.932	115.453	6	2.1
195	2017/4/21	30.287	114.908	5	2.3
196	2017/8/19	29.942	115.455	7	2
197	2017/11/6	29.974	115.407	7	2.2
198	2017/11/6	29.93	115.469	7	2
199	2017/11/25	29.86	115.378	8	2.8
200	2017/11/25	29.887	115.39	5	2.4

从表 3.4-2、图 3.4-2 可以看出, 1970 年以来近场区内, 记录到 M≥2.0 级地震 200 次。显然, 现代小震活动无论地震的强度还是频度都呈较低水 平。

3.4.2 历史地震影响

分析历史地震对工程场地的影响,是地震安全性评价的重要组成部分 之一。区域及邻近地区发生过多次破坏性地震,应当考虑这些地震对场地 的影响烈度值,为场地的地震安全性评价提供依据。本报告将从两个方面 来考察历史地震的影响烈度,一是根据历史地震的实际资料,查明工程场 地的宏观影响烈度:二是计算工程场地点的烈度值。

1) 1633 年 4 月 6 日黄冈 M4¾级地震

据1995年《中国历史强震目录》

时间:1633年4月6日(明崇祯六年二月二十八日);发震地点:湖北黄冈(30.6°,114.9°);定位精度:3;记载:黄冈、浠水、蕲州、武昌(江 涌如沸)、红安、罗田(以上三地只记年)均震。

这次地震事件年月日明确,有感范围明确,但震中不详。因此,按长 短轴交汇中心为震中,精度3,位于黄冈北,有感平均半径75km,满足4¾ 级地震条件。此地震历史等震线见图3.4-3,工程场地位于有感区内。

2) 1640 年 9 月湖北黄冈 M5 级地震

据1995年《中国历史强震目录》

时间:1640年9月(明崇祯十三年八月);发震地点:湖北黄冈(30.5°, 114.9°);定位精度:2;记载:民舍坏。

这次地震事件年月明确,震中为黄冈城关(民舍坏),精度3,但有感 范围不明。

98

3) 1917年1月24日安徽霍山 M6¼级地震

地震日期: 1917 年 1 月 24 日;发震地点:安徽霍山(31.3°,116.2°) 震中烈度VIII。

极震区:包括黑石渡、落儿岭、马家岭、烂泥均等地区。区内老旧房 子都倒塌,掉砖掉瓦普遍存在,较好的房屋也歪斜,墙上裂缝。落儿岭、 鹿吐石铺、烂泥坳、黑石渡等地道路普遍裂缝,且有喷水冒沙现象:落儿 岭鹿吐石铺一带山石震裂,甚至出现山崩。落儿岭乌龟峡的垮石崖就是这 次地震时山石垮落形成而得名的。

霍山: 塔底部裂缝, 不坚固的房屋倒塌, 烟囱、土墙倒塌很多。山崩, 大石下滚。地裂缝有宽 10 多厘米, 长 3m 者, 沿河裂缝尤多, 冒水, 井涸。 石狮子(县西 1km) 地陷二阱。死数十人。

佛子岭:房屋普遍开裂,有较多的掉灰瓦现象。武汉:房屋倒塌数十 处。

罗田:一祠堂牌楼震倒一角,朽旧房子倒2间,一旧檐墙裂缝(长15m,

宽 7cm)。

麻城:墙有震倒者。

阜南:有倒锅台者。

梅山: 部分土墙有倒塌者。

六安: 个别破旧墙震倒, 檐瓦间有坠落。

蕲春:屋瓦间有震落,个别墙裂缝。

鄂城:东门外年久失修的塔震垮一块。

浠水:屋瓦有震落,一老砖墙裂缝宽10多厘米。

大治:教堂东墙震裂宽 30cm,长 7m,华济水泥厂之院墙倒塌 7m 多。 有感面积很大,有记载的如下:潜山、太湖、宿松、太和、黟县、芜 湖、全椒、寿县、霍丘、舒城、安庆、怀宁、合肥、桐城、望江、庐江、 巢县、无为、东县、来安、和县、歙县、休宁、祁门、宣城、泾县、太平、 班德、贵池、铜陵、石埭、东流、秋浦(属至德)、天长、毫县、凤阳、颖 上、蒙城、含山、南昌。河南省之光山、正阳、商水、信阳、商城、罗山、 确山、汝南、沈丘、桐柏。江苏省之高淳、镇江、宿迁、南京、浦口、溧 水、丹阳、金坛、无锡、江浦。湖北省之黄冈、新洲、英山、应山、嘉鱼、 通城、汉川、孝感、黄安、黄海、安陆、云梦、应城、襄阳、钟祥、京山、 荆门、江陵。江西省之南昌、婺源、德兴、宜丰、新建、弋阳、修水、九 江、奉新、德安、瑞昌、玉山、余干、都昌。浙江省之杭州、富阳、新登、 安吉、衢县、常山、开化、分水、湖南省之岳阳、湘阴、南县等县均有感。 记载最远有震感距离达 450km。数十天内,尚有小震,2月22日又震,霍 山上有石块滚落。

目标区位于有感区内。

4) 1932 年 4 月 6 日 湖北麻城北 M6 级地震

据1995年《中国历史强震目录》

地震日期: 1932年04月06日;发震时刻: 17-11-18;发震地点:湖北 麻城北 (N31.4°, E115.0°);震级:6;震中烈度:VIII。

宏观震中: 31°22'N, 115°04'E。

麻城: 县北郭家畈, 古洞寺一带较重, 房屋倒塌 50%~60%, 未倒者 多被震歪或裂缝, 屋瓦掉下大半, 古洞寺砖木结构瓦房亦全部塌毁。山石 崩塌, 崩下巨石大者直径数米, 重万公斤, 小者数公斤, 满布郭家畈田中。 地面裂缝, 并冒黑沙水。死6人, 伤27人, 死伤牲畜4头。县城及其它地 区房屋倒坏 10%~50%(多倒坏山墙及前后檐)墙壁普遍裂缝。山脊、山 坡、河滩、田畈、塘边等处多发生裂缝, 并有喷沙冒水。陡峻山崖普遍发 生崩塌, 井泉水多变浑或干涸。

汉口、鄂城、浠水、大冶、罗田、黄冈均有感。

这次麻城 1932 年 6 级地震对武汉房屋造成轻微损坏,普遍震感明显, 市民惊慌失措,奔走户外。工程场地位于有感区内。

场地影响烈度分析:由于历史的原因,地震记载不可避免有不详和遗 漏情况,为了更全面了解历史地震对工程场地的影响,这里对缺乏地震对 工程场地所在区破坏记载的地震进行烈度计算。烈度计算公式选用中国地 震局地球物理研究所在"长江三峡三斗坪坝区地震危险性分析和地震动参 数研究"中得到的湖北及邻区地震烈度衰减关系(中国地震局地球物理研究 所,1990),如下式:

 $I_a = 4.924 + 1.083M - 1.337\ln(R_a + 12)$ (3.4-1)

 $I_b = 3.936 + 1.024M - 1.133\ln(R_a + 6)$ (3.4-2)

表 3.4-3 给出工程场地所遭受的计算影响烈度 I≥IV 度的地震目录,计算烈度一栏中数据为式(3.4-1)和式(3.4-2)的最大计算结果。
12	J. T -J	区域地展为工作初地影响有新发(影响新发/117							
卢旦	发震时刻	雪奴	震中烈	与工程场地趴	巨离、对其最大影响烈度	关土山力			
厅马	年-月-日	辰圦	度	距离 Km	最大影响烈度	今 圬 地 石			
1	1629-04-02	13/4		38.0	IV	湖北黄冈			
1	1027-04-02	7/4		50.7	1 V	蕲州间			
2	1633-04-06	43/4		40.1	IV	湖北黄冈			
3	1634-03-30	51/2	VII	72.6	V	湖北罗田			
4	1640-09-06	5	VI	37.8	V	湖北黄冈			
5	1897-01-05	5	VI	28.5	VI	湖北阳新			
6	1022 04 06	6	VIII	116.0	IV	湖北麻城			
0	1932-04-00	0	v III	110.9	IV	黄土岗			

表 3.4-3 区域地震对工程场地影响计算烈度(影响烈度≥IV)

对历史地震的宏观影响烈度情况和计算得到工程场地点的影响烈度值 两方面的研究情况进行分析,近场去及其邻近地区自有地震史料记载以来 曾多次发生有感地震,但对目标区没有造成严重破坏。其中对目标区影响 最大是 1897 年 1 月湖北阳新 M5 级地震,对工程场地的影响烈度为 VI 度。

综合上述结果,近场区及近邻地带破坏性地震和现代地震活动呈中等 偏下水平。区域内历史破坏性地震对工程场地最大影响烈度为 VI 度。

3.5 近场区地震构造综合评价

近场区位于扬子准地台与秦岭-大别褶皱系接壤地带。新构造期以来, 近场区新构造东北、南部升、西降,局部差异性升降的特征,强度中等。

近场区及近邻地带历史和现代地震活动呈中等偏下水平。区域内对工程有较大影响的中强震,最大影响烈度为 VI 度。

近场区内第四纪断裂以北东、北西向为主,其中北西向阳新断裂距目标区约 10km;北西向襄樊-广济断裂距目标区约 14km;北西向蕲州断裂带距目标区约 18km;北东向麻城-团风断裂距目标区约(铁山地块)21km;北东向巴河断裂距目标区约 37km,上述断裂均为早-中更新世断裂,其余为前第四纪断裂。这些断裂上具有发生背景地震、中等地震的构造条件。

4 目标区断层勘查与活动性鉴定

4.1 目标区断层勘查

4.1.1 目标区断层调查

目标区位于扬子准地台扬子台褶带的西端——大冶凹褶断束,该单元 是以北西向襄樊-广济断裂、北东向麻城-团风断裂和近东西向阳新断裂 所围限的三角地块。目标区所在的区域现今保留的主要构造形迹为褶皱和 断裂构造,其展布方向为近东西向,延伸指向目标区的仅有近东西向大冶 湖北缘断裂(图 4.1.1-1),铁山地块周缘无指向或延入目标区的断层;本次 工作重点对大冶湖北缘断裂进行了详细的地质调查研究工作。

项目组在石龙头村张家口南约 100m 进行了实地调查, 断裂通过之处形成了宽约 100m 左右的断层破碎带(图 4.1.1-2), 内部由多条次级断裂组成。

主断层的上盘为下三叠统大冶组青灰色中~厚层状灰岩, 岩层产状 185° ∠45°, 岩石较完整。

f1 形成宽约 10~15m 的构造破碎带,构造岩表面风化呈褐黄色,土黄色, 胶结较好,在山腰间表现为凸出的脊状地貌,断层产状 185°∠70°,表现出 早期逆冲,后期伸展性质(图 4.1.1-3)。

图 4.1.1-2 大冶湖北缘断裂石龙头村张家口南约 100m 地质剖面图 1.灰岩; 2.白云质灰岩; 3.炭质页岩; 4.泥质灰岩; 5.构造岩; 6.断层; 7.下三叠统大冶组; 8.上二叠统

图 4.1.1-3 大冶湖北缘断裂石龙头村野外特征

f1 与 f2 之间为上二叠统灰红色、灰色中层状白云岩与灰岩互层,产状 180°∠53°。f2 与 f3 之间为上二叠统青灰色、灰红色薄层状泥质白云岩与泥 灰岩互层,岩层面微波状,200°∠21°(图 4.1.1-4)。

f3 断层形成宽约 5~10m 的破碎带,构造岩为呈灰黑色,胶结一般的构造角砾岩和碎粉岩,断面产状 230°∠80°,次级面有两组擦痕,150°∠45° (擦痕面),10°NE,左行 155°∠65° (面),23°NE 左行。

主断层下盘为上二叠统中层状白云岩夹煤线,内部发育有次级断面 f4, 230°∠35°,地层上部倾向南,下部倾向北,近直立。

图 4.1.1-4 大冶湖北缘断裂带石龙头村野外特征

汪仁镇东侧的马鞍山村也揭露该断层(图 4.1.1-5),断层通过处断层两 盘地层变陡倾,上盘地层产状与断面产状近一致,形成两个宽约 5~10m 的 破碎带,内部为泥钙质胶结的碎粉岩、碎粒岩,胶结一般,部分胶结较好, 断面产状为 175°∠80°,近直立(图 4.1.1-6)。断层呈正断性质。

图 4.1.1-5 大冶湖北缘断裂马鞍山村地质剖面图 1. 白云岩; 2. 残坡积层; 3. 构造岩; 4. 断层; 5. 中、上寒武统; 8. 第四纪残坡积层

图 4.1.1-6 大冶湖北缘断裂马鞍山村断层破碎带特征

断层两盘地层均为 €₂₊₃ 中~厚层状白云岩,表面刀砍纹发育,上盘地层 产状 200° ∠ 70°,靠近断面产状变陡,下盘地层产状 240° ∠ 44°,两盘地层 较完整,靠近破碎带,表现出碎裂化,但又被后期热液活动重新胶结。

沿断裂走向方向向目标区内追踪调查,断层通过的地方未错段上覆的 Q₂₋₃堆积层,断裂附近Q₂₋₃地层未见明显倾斜位错迹象。

4.1.2 高密度电阻率法勘察

为查明目标区是否存在隐伏断裂,在地表断裂构造地质调查的基础上, 布置物探高密度电法剖面。近场区范围构造线方向为近东西走向,本次物 探高密度电阻率法剖面总体按近南北向布置,共布设测线 12条,合计完成 总工作量 7.8km。具体位置见图 4.1.2-1,完成工作量具体见表 4.1.2-1。

图 4.1.2-1 目标区高密度电阻率法勘察剖面布设图

表 4.1.2-1	
-----------	--

高密度电法完成工作量一览表

测线编号	线长 (m)	极距(m)	测线方位 (°)	所在位置	总长(m)
A-A'	900	5	25	四棵地块③	
B-B'	300	5	21	四棵地块③	
C-C'	450	5	8	四棵地块③	
D-D'	300	5	0	四棵地块③	
E-E'	750	5	26	四棵地块③	
F-F'	300	5	21	汪仁地块②	7200
G-G'	1500	5	153	汪仁地块②	/800
H-H'	450	5	0	汪仁地块②	
I-I'	1050	5	83	汪仁地块②	
J-J'	900	5	28	汪仁地块②	
K-K'	600	5	0	章山地块①	
L-L'	300	5	60	铁山地块④	

根据野外采集的原始数据,资料整理得到反演电阻率断面图、物探地 质解译图及物探解释成果(见附图 03-14),并结合地质调查及钻孔揭示进 行了详细分析。本次勘察的成果分述如下:

1)测线 A-A'高密度电阻率法成果分析

测线全长 900m,方位 25°。该断面整体反演电阻率偏低,基本小于 100Ω·m,一般约 30Ω·m,反演电阻率横向分布不均匀,电性分层不明显, 结合钻探成果资料,推断岩性为砂岩,砂岩整体胶结一般,岩层较松散, 孔隙较大,电阻率整体偏低,电阻率的横向差异主要与泥质含量和含水率 有关。

断面上无明显断层反映。

2) 测线 B-B'高密度电阻率法成果分析

测线全长 300m, 方位 21°。该断面整体反演电阻率偏低,基本小于 100Ω·m, 一般约 30Ω·m, 反演电阻率横向分布不均匀, 电性分层不明显, 结合钻探成果资料, 推断岩性为砂岩, 砂岩整体胶结一般, 岩层较松散, 孔隙较大, 电阻率整体偏低, 电阻率的横向差异主要与泥质含量和含水率 有关。

断面上无明显断层反映。

3) 测线 C-C'高密度电阻率法成果分析

测线全长 450m, 方位 8°。该断面整体反演电阻率偏低, 基本小于 100Ω·m, 推断的较完整基岩面埋深约 10m, 在测线 0~80m 埋深逐渐增大, 结合钻探成果资料, 推断岩性为砂岩, 砂岩整体胶结一般, 岩层较松散, 孔隙较大, 富水性良好, 电阻率整体偏低。在测线 120~280m 处, 深度大于 30m, 有低阻异常, 反演电阻率小于 10Ω·m, 推断为岩层破碎。

断面上无明显断层反映。

4) 测线 D-D'高密度电阻率法成果分析

测线全长 300m, 方位 0°。该反演断面基本可分为两个电性层, 第一层 深度范围为地表至地下约 8m, 为覆盖层, 其特征为电性横向分布不均匀, 局部表现为相对高阻。第二层深度范围为地下 8m 至 40m 左右, 反演电阻 率一般约 20~30Ω·m, 电性较均匀, 推断为砂岩, 砂岩整体胶结一般, 岩层 较松散, 孔隙较大, 富水性良好, 电阻率整体偏低。

断面上无明显断层反映。

5) 测线 E-E'高密度电阻率法成果分析

测线全长 750m, 方位 26°。反演电阻率断面图显示断面可以分为三段:

其中测线 0~430m, 断面地表为平整后的杂填土, 浅表电阻率横向分布 不均匀, 主要表现为相对高阻, 反演电阻率一般约 50~100Ω·m, 主要原因 为碎石含量较高, 且不饱水, 推断的整体覆盖层厚度约 8m。

在测线 0~430m 处下伏基岩的反演电阻率约 50~60Ω·m,结合钻探成果 资料,认为岩性为砂岩,砂岩整体胶结一般,岩层较松散,孔隙较大,富

水性良好,电阻率整体偏低。在测线 240~340m 有局部高阻异常,反演电阻 率大于 100Ω·m,结合区域地质资料,推断为泥质灰岩。

在测线 430~450m 处反演电阻率横向变化,推断为岩性分界面,为砂岩与泥质灰岩的接触界面。

在测线 450~750m 处反演电阻率一般大于 100Ω·m, 推断为泥质灰岩, 其中在 540m 及 650m 处有局部低阻异常,反演电阻率小于 60Ω·m, 推测与 风化深槽或者局部的岩溶发育有关。

在断面内无明显断层反映。

6) 测线 F-F'高密度电阻率法成果分析

测线全长 300m, 方位 21°。反演电阻率断面图显示断面可以分为三段:

测线 0~140m,反演断面可分为三个电性层,第一层从地表至地下约 10m, 为覆盖层,反演电阻率一般 50Ω·m;第二层为地下约 10~35m,反演电阻率 变化范围 100~300Ω·m,电性较均匀推断为泥质灰岩;第三层为地下约 35m 以下,反演电阻率低于 100Ω·m,推断为岩溶发育。

测线 140~170m,反演电阻率在表层和深部都出现横向变化,推断为岩性分界面。

测线测线 170~300m,该段反演断面可分为两个电性层,第一层从地表 至地下约 10m,反演电阻率一般 50Ω·m,结合区域地质资料推断为为全风 化基岩;第二层为地下约 10~35m,反演电阻率变化范围 80~200Ω·m,电性 较均匀,结合区域地质资料推断为致密的粉砂质泥岩。

在断面内无明显断层反映。

7) 测线 G-G'高密度电阻率法成果分析

测线全长 1500m, 方位 153°。整个电阻率反演断面均表现为低阻,反 演电阻率一般小于 100Ω·m,表明该断面下伏基岩的电阻率较低,覆盖层与 其下伏基岩无明显电阻率差异,结合区域含砾砂岩的电性特征,推断断面 地层岩性为含砾砂岩。

断面内在测线 250m、380m、490m、710m、840m、1000m 及 1130m 附 近有局部低阻异常,反演电阻率低于 30Ω·m,推断与局部岩层破碎、富水 有关。

在断面内无明显断层反映。

8) 测线 H-H'高密度电阻率法成果分析

测线全长 450m, 方位 0°。该断面地表为平整后的杂填土, 碎石含量较高, 浅表电阻率横向分布不均匀, 第四系松散土层主要表现为低阻, 反演 电阻率一般小于 50Ω·m; 杂填土中的碎石则表现为相对高阻, 反演电阻率 一般约 50~100Ω·m。 剖面 290~440m 为强风化泥质灰岩, 裂隙较为发育, 表现为相对低阻。

下伏较完整的基岩面推断见图中岩性分界线,反演电阻率约 100~400Ω·m,横向变化较小,反映出基岩的电性较为稳定,结合钻孔资料 推断为泥质灰岩。在其中分布有低阻体(蓝色曲线),埋深一般大于 30m, 推断为泥质灰岩节理裂隙发育,导致岩溶较发育。

断面内无明显断层反映。

9) 测线 I-I'高密度电阻率法成果分析

测线全长 1050m, 方位 83°。该断面地表为原垄岗地貌开挖场坪后的平地, 开挖后场地基岩为泥质粉砂岩。浅部 0~170m、245~390m、455~695m、 730~1020m 反演电阻率一般小于 60Ω·m, 推测为强风化的泥质粉砂岩, 局 部低阻异常可能为裂隙或者节理密集发育区。

下伏基岩在整个断面上反演电阻率约 100~400Ω·m,横向变化较小,反 映出基岩的电性较为稳定,结合区域地质资料和钻孔资料推测为致密的泥 质粉砂岩(弱风化~微风化)。在其中分布有四处局部低阻异常(蓝色曲线), 中心位置分别在测线 300m、520m、800、905m, 埋深大于 35m, 形态相似, 推断为局部节理裂隙发育。

断面内无明显断层反映。

10) 测线 J-J'高密度电阻率法成果分析

测线全长 900m, 方位 28°。测线 0~170m 段可分为较明显的两个电性 层, 第一层为地表至地下 10m 左右, 反演电阻率小于 200Ω·m, 推断为覆盖 层; 第二层为地下 12m 至 40m, 推断为基岩,基岩面起伏平缓, 反演电阻 率大于 200Ω·m, 基底反演电阻率大于 1000Ω·m,结合附近钻孔资料, 认为 岩性为白云岩, 较完整。

测线 170~900m,该段覆盖层反演电阻率小于 50Ω·m,厚度变化较为均 匀,约 8m。其下伏岩层电阻率横向变化不均,一般小于 200Ω·m,根据区 域地质资料和附近钻孔推测可能为黏土矿物含量较多的泥质粉砂岩等电阻 率较低的岩层引起,在这些岩层局部存在反演电阻率低于 50Ω·m 的低阻异 常区,推断为褶皱构造的转折端,这些部位裂隙发育为局部含水层或饱水 带。基底反演电阻率大于 1000Ω·m,根据区域地质资料和附近钻孔推断为 白云岩,受褶皱构造影响白云岩的顶界面与起伏变化较大。

在断面内无明显断层反映。

11) 测线 K-K'高密度电阻率法成果分析

测线全长 600m, 方位 0°。该反演断面基本可分为两个电性层, 第一层 深度范围为地表至地下约 3~8m, 为覆盖层, 其电性特征为低阻, 反演电阻 率小于 100Ω·m。第二层深度范围为地下 8m 至 45m 左右, 反演电阻率大于 1000Ω·m, 电性较均匀, 结合钻探成果资料, 推断为白云质灰岩。

断面上无明显断层反映。

111

12) 测线 L-L'高密度电阻率法成果分析

测线全长 300m, 方位 60°。该反演断面基本可分为两个电性层, 第一 层深度范围为地表至地下约 10m, 为覆盖层, 其电性特征为低阻, 反演电 阻率小于 100Ω·m。第二层深度范围为地下 10m 至 45m 左右, 反演电阻率 大于 1000Ω·m, 电性较均匀, 结合钻探成果资料推断为白云质灰岩。

断面上无明显断层反映。

4.2 目标区断层活动性鉴定

大冶湖北缘断裂走向近东西向,为晚中生代-新生代大冶湖盆(K₂-E) 的控制性构造。大冶湖中新生代盆地是在印支期大冶复向斜基础上经燕山 期的改造叠加而形成的,大冶盆地属地堑性质。盆地中心后湖一带,出现 一系列玄武岩和火山凝灰岩以及晚白垩-古近纪湖群(K₂-E)河湖相碎屑 岩,湖盆周缘分布着第四纪残积、冲洪积、湖积、粘土层,其中中更新统 网纹土(冲、洪积)最厚超过 25m。

大冶湖全新世湖盆范围远小于中更新世湖盆,在大冶湖全新世湖盆南 北两侧,中-晚更新统堆积覆于晚白垩-古近纪红层之上,构成向湖心缓 缓倾斜的波状岗地,没有拗折陡坎。

刘锁旺等(1989)在大冶湖东北的河口镇石龙头村进行了相关研究, 二叠系中统(P₂)逆冲于三叠系大冶组(T₁dy)地层之上,形成的破碎带大 于100m,破碎带内主要发育断层角砾岩、碎粉岩,胶结较好,地表受风化 应力作用,破碎强烈,棕红色粘土风化淋漓明显,采集棕红色断层泥状物 质作 SEM 测年表明,断裂在上新世-早更新世曾有过明显活动。

本次物探工作针对大冶湖北缘断裂布设的高密度电法测线(E-E'、F-F'、 G-G'、K-K')解译成果中均未见有断裂显示,说明大冶湖北缘断裂在岩层

112

中形成的断层破碎带已经完全胶结固化,野外的地质调查也证实断层破碎 带内的构造岩胶结较好。目标区内断层延伸方向两侧,钻孔揭露覆盖层厚 度无差异。

综上所述,大冶湖北缘断裂沿走向未见错断山脊、断层三角面、水系 错断等活动断裂的地貌特征,野外调查表明断层带内构造岩胶结较好,并 且在断层可能通过目标区的位置布设的物探剖面上也无错断 Q₂₋₃ 地层的显 示,结合前人(刘锁旺等,1989)针对该断裂的构造年代学研究成果,综 合认为大冶湖北缘断裂属于前第四纪活动断裂。

5 地震危险性概率分析

按照《工程场地地震安全性评价》(GB17741-2005)和《湖北省区域性 地震安全性评价工作技术大纲(试行)》(鄂震发[2018]173号)的规定,本 章依据前述章节关于区域及近场区域地震活动性、区域及近场区域地震构 造背景的研究,确定对目标区地震安全性有影响的地震带、地震构造区及 潜在震源区划分,地震带、地震构造区及潜在震源区地震活动参数,并利 用所确定的适合本区的地震动衰减关系,以地震危险性的概率分析方法, 进行目标区的地震危险性分析计算。

5.1 地震危险性概率分析方法概述

目前我国在地震安全性评价工作中使用的地震危险性概率分析方法, 是在 Cornell (1968) 提出的概率地震危险性分析方法的理论框架上,结合 我国地震活动时空不均匀性的特点,吸收我国地震中长期预测的大量科研 成果,经过一些关键环节的改进形成的。本报告参照的计算方法综合了中 国地震烈度区划图(1990)和《工程场地地震安全性评价》(GB 17741-2005) 规定的概率地震危险性分析方法。该方法有两个最突出的特点:第一,以 考虑地震统计区未来地震活动水平趋势预测的地震活动性参数反映地震活 动的时间不均匀性:第二,以地震统计区及潜在震源区划分及其地震活动 性的差异来反映地震活动的空间不均匀性。该方法主要由以下步骤:

第一,在地震活动性研究和构造分析基础上划分地震带,并确定地震带的地震活动性参数。以此作为考虑地震活动时间非均匀性、确定未来百年地震活动水平和地震危险性空间相对分布概率的基本单元。地震带内部地震活动在空间和时间上都是不均匀的。

第二,在地震带内划分出地震构造区,进一步在地震构造区内划分出

潜在震源区,并确定地震构造区背景潜源和潜在震源区的地震活动性参数。

第三,确定合理的地震动衰减关系。

第四,根据分段泊松模型计算每个地震带对场点的地震危险性贡献,综合各地震带的地震危险性贡献,求出场点的地震危险性。

对于一个场点进行地震危险性分析,通常通过以下几个步骤得到:

设有 N_z个地震带对场点的地震危险性有贡献,相应于第 iZ 个地震带 对场点地震动的年超越概率为 P_i,则场点总的地震动年超越概率表示为:

$$P = 1 - \prod_{i_z=1}^{N_z} (1 - P_{i_z})$$
 $i_z = 1, 2, ..., NZ$ (5.1-1)

地震带是地震活动性分析的统计单元,它应具有统计上的完整性和地 震活动趋势的一致性。假定地震发生的时间过程符合分段泊松过程,t年内 地震年平均发生率为v,,则:

$$P_{kt} = \frac{(v_t \cdot t)^k}{k!} \exp(-v_t \cdot t)$$
(5.1-2)

式中Pa是地震带未来t年内发生k次地震的概率。

地震带内大小地震的比例关系符合修定的古登堡——里克特震级——频度 关系,相应的震级概率函数为:

$$f_m(\mathbf{m}) = \frac{\beta \exp[-\beta (\mathbf{m} - M_0)]}{1 - \exp[-\beta (M_{uz} - M_0)]}$$
(5.1-3)

其中 β =bln10, M_0 , M_{uz} 分别是起算震级和震级上限。

在地震带中划分出若干不同震级上限的地震构造区和潜在震源区。从 分段泊松模型和全概率定理可知,区内所发生的地震在场点所产生的地震 动值(A)超过给定值(a)的概率为:

$$P(A \ge a) = 1 - \exp\{-v \sum_{j=1}^{N_m} \sum_{i=1}^{N_s} \iiint \frac{1}{S_i} P(A \ge a | E_i) P(m_j) f_{i,m_j} f(\theta) dx dy d\theta\}$$
(5.1-4)

式中 P(m_j)为地震带发生的地震落在震级档 $m_j \pm \frac{1}{2}\Delta m$ 内的概率,它可表示为:

$$P(m_j) = \frac{2}{\beta} f_m(m_j) sh(\frac{1}{2}\beta\Delta m)$$
(5.1-5)

由以上两式可得知:

 $P(A \ge a) = 1 - \exp\{-\frac{2\nu}{\beta} \sum_{j=1}^{N_m} \sum_{i=1}^{N_s} \iiint \frac{1}{S_i} P(A \ge a | E_i) f_m(m_j) f_{i,m_j} f(\theta) sh(\frac{1}{2} \beta \Delta m) dx dy d\theta\}$ 式中 $f(\theta)$ 为破裂方向的概率密度函数, f_{i,m_j} 为地震空间分布函数, ν 为 4.0 级以上地震的年平均发生率, $P(A \ge a | E_i)$ 为地震带内第 i 个地震构造区背景

潜源或潜在震源区内发生某一特定地震事件(震中(x,y),震级 $m_j \pm \frac{1}{2}\Delta m$,破裂方向确定)时场点地震动超越 a 的概率,Si 为地震带内第 i 个潜在震源区的面积。这就是某一地震带发生地震在场点产生地震动的年超越概率公式。

本报告采用的危险性分析计算程序中,采用国内外普遍使用的校正方 法进行地震动衰减的不确定性校正,即认为地震动衰减离散性符合正态分 布或对数正态分布,对地震动衰减关系的不确定性校正公式为:

$$P(A \ge a) = \int_{-3\sigma}^{3\sigma} P(A \ge a - \varepsilon) f(\varepsilon) d\varepsilon$$
(5.1-6)

式中, $P(A \ge a)$ 是经校正的地震危险性, $P(A \ge a - \varepsilon)$ 是未经校正的地震危险性, ε 为随机误差项, $f(\varepsilon)$ 为其概率密度函数。

5.2 地震区活动性参数确定

地震统计区活动性参数主要包括震级上限、起算震级、b值、年平均发 生率。

1) 震级上限 M_{uz}

预期未来发生超过该震级地震的概率趋近于 0。M_{uz}是地震危险性概率 分析中的重要参数之一,它的强度和空间分布,对地震区划图的图像和需

要评价地震危险性的工程场地都有重要的影响。通常认为地震统计区的震级上限和它所处构造环境有关。

中国东部郯庐带上发生了 M8½级地震,这是我国东部断裂带规模最大、 活动性最高、最强的断裂带,西部两个 M8½地震都是发生在青藏高原东北 突出的弧形构造带上。而在大别山区、长江中下游的一些地震统计区,历 史上发生的最大震级为 M8¾地震,属中强震活动水平。故长江中游地震统 计区、华北平原地震统计区、郯庐地震统计区及长江下游-南黄海地震统计 区震级上限取值见表 5.2-1。

2) 起算震级 M₀

表 5.2-1

是指对目标区可能有影响的最小地震。由于我国大陆地区绝大多数是 浅源地震,历史上不少 M4 级左右地震也有可能造成轻度破坏。为保证地震 危险性评定中破坏性地震计算的可靠性,本报告各地震统计区取起算震级 M₀定为 M4.0 级。

地震统计区	震级上限(M)	起算震级(M)
长江中游地震统计区	7.0	4.0
郯庐地震统计区	8.5	4.0
长江下游-南黄海地震统计区	7.5	4.0

地震统计区震级上限、起算震级

3) 震级-累积频度关系中的 b 值

b 值依据古登堡-里克特所定义的震级频度关系式 lgN = a - bM,由实际地震数据统计确定。式中 a, b 为常系数,N 为震级大于等于 M 的地震个数。b 值代表着一个区域内不同大小地震频数的比例关系,它表征了统计区范围内各震级地震的密度分布函数和各震级地震的年平均发生率。它和该区应力状态与地壳破裂强度有关,不同的地震统计区有其相应的 b 值分布。在地震危险性分析中,b 值是一个重要参量,它规定了统计区范围内各震级

地震的密度分布函数和各震级地震的年平均发生率。而地震年平均发生率 v 是指在一定统计区(地震统计区)范围内,平均年发生等于和大于起算震 级 M0 以上的地震数。它代表了统计区内的地震活动水平,地震年平均发生 率的大小,对地震危险性分析计算结果影响颇大,影响地震统计区地震年 平均发生率的主要因素是 b 值选取资料的统计时段,要求被统计时段的地 震活动性能代表百年内地震活动水平。

(1) 长江中游地震统计区

长江中游地震统计区,地震活动相对较弱,记载到的历史地震以 M5 级左右地震为主,M6级以上地震非常稀少。最早历史地震记载始于公元前 143年6月竹山 M5级地震。该区 1300年之前地震资料遗失较多,1300年 以来 M≥5.5发生地震较为平稳,1500年以后 M≥5.0地震较为完整,1900年以后 M4.7级以上地震相对完整,1970年以来M3.0级以上地震记录较全。 在历史阶段,地震活动较密集的时段分别始于公元 1467和公元 1813年。 未来活动水平应以活跃期地震活动水平估计。表 5.2-2给出长江中游地震统 计区不同时段地震发生率的统计。其b值计算结果见表 5.2-5。

圭	5	2	2
বহ	3	.2	-2

长江中游地震统计区不同时段地震年平均发生率

		M3.0 级以上地震累积年平均发生率										
时间段	4.0	4.5	5.0	5.5	6.0	6.5	7.0					
1400-2019				0.0374	0.0049	0.0016	0.0000					
1500-2019			0.1204	0.0408	0.0058	0.0019	0.0000					
1970-2019	3.1667	1.1905	0.3810	0.0476	0.0000	0.0000	0.0000					

(2) 郯庐地震统计区

郑庐地震统计区发生过著名 1668 年郯城 - 莒县 M8½级特大地震。该区 地震记载最早始于公元前 70 年,但公元 1500 年之前,地震缺失较多,1500 年后 M5 级以上地震记录才基本完整,M≥5.0 级地震发生较为平稳,1970 年以来 M4 级以上地震记录较全。公元 1477 和公元 1829 年是两个地震活动 相对密集期的开始,未来地震活动水平不应低估活跃期水平。b 值和 v4 取 值考虑了多方面因素:小震级段与 1970 年来水平大致相当,中强震级段与 活动期地震活动水平相当:高震级档与 1500 年以来活动水平相当。表 5.2-3 给出郯庐地震统计区不同时段地震发生率的统计。其 b 值计算结果见表

5.2-5.

表 5.2-3

郯庐地震统计区不同时段地震年平均发生率

		M4 级以上地震累积年平均发生率									
时间段	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0		
1477-2019			0.1468	0.0781	0.0390	0.0167	0.0112	0.0037	0.0019		
1500-2019			0.1476	0.0777	0.0388	0.0175	0.0117	0.0039	0.0019		
1892-2019			0.2439	0.0976	0.0650	0.0325	0.0163	0.0081	0.0000		
1970-2019	3.7778	1.3111	0.3111	0.0667	0.0222	0.0222	0.0222	0.0000	0.0000		

(3) 长江下游-南黄海地震统计区

长江下游-南黄海地震统计区是地震活动较强地区,以中强地震活动 为主要特征,大地震较少,且主要发生在南黄海海域,最大地震震级为 M7 级。该区最早的地震记载始于公元 499 年,1485 年之前地震缺失较多,1485 年后 M5 级以上地震记录基本完整,1970 年以来 M4 级以上地震记录较全。 1491 年和 1839 年为两个地震活动相对密集期的开始。表 5.2-4 给出长江下 游-南黄海地震统计区不同时段地震发生率的统计。其 b 值计算结果见表 5.2-5。

表 5.2-4

长江下游-南黄海地震统计区不同时段地震年平均发生率

		M4 级以上地震累积年平均发生率										
时间段	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0			
1485-2019			0.1115	0.0586	0.0359	0.0170	0.0019	0.0000	0.0000			
1839-2019			0.2571	0.1543	0.0914	0.0457	0.0057	0.0000	0.0000			
1970-2019	2.7727	0.8182	0.3182	0.1136	0.0909	0.0000	0.0000	0.0000	0.0000			

	夕王华 V4	
地域	b 值	ν4
长江中游地震统计区	0.99	3.0
郯庐地震统计区	0.87	4.1
长江下游-南黄海地震统计区	0.85	3.1

表 5.2-5 地震统计区 b 值及年平均发生率 v4

5.3 潜在震源区的划分及活动性参数确定

5.3.1 潜在震源区的划分原则

潜在震源区是指未来具有发生破坏性地震潜在可能的地区。目前,划 分潜在震源区的原则,简单归纳起来可以分为两条:

 1)地震构造类比原则。这是指某地区历史上虽然没有强地震或有中等 强度地震记载,但与已经发生过强震地区的构造条件具有类似特点,这可 以划为具有同类震级上限的潜在震源区。或者是指虽无强震记载,但已发 现有古地震迹象的地段,也可划为相当于古地震较大震级的潜在震源区。

2)地震活动重复原则。这是指历史上已发生过强震的地段或地区,将来仍有可能发生类似的地震。历史地震的地点和强度是估计未来潜在震源区的重要依据之一。一般情况下,各潜在震源区震级上限不应低于区内最大历史地震震级,在历史地震记载比较充分的情况下,可以历史上发生的最大震级作为震级上限,在历史地震资料不完整的地区,可考虑历史地震最大震级加半级作为震级上限。此外,还需要研究近期的地震活动性,通过近期强震活动以及相关的小震活动和图像特征分析,以增加判定潜在震源区的依据。此外,地震活动在空间上的迁移、填空等特点,有时也被用作划定潜在震源区的佐证。

潜在震源区边界和宽度的确定,一般是依据活动断裂的展布范围、几 何特征、力学性质、产状、断陷盆地范围等进行圈定。同时还考虑历史地 震、古地震等资料,大震后的余震分布范围以及现今小震分布的范围。潜 在震源区长度或分段边界是以断裂结构、活动强度的差异,以及地震地表破裂带的展布和终止位置来确定的。

5.3.2 潜在震源区划分标志

结合区域地震活动和构造方面的研究成果,归纳出研究区强震发生的地震地质条件,并以此划分具有不同震级上限潜在震源区的标志和依据。

1) 震级上限 7.0 级潜在震源区

(1)发生过≥6¼级但<7级的地震或古地震。

(2)发生在近北东向深大断裂带上,规模大,更新世以来活动性较强。 发育一定规模的断层谷和断崖,区内以北东向霍山-罗田活动断裂为主要 发震构造。

(3)发震部位往往靠近或位于与它组断裂(例如东西向信阳-金寨断裂)的交汇或转折部位。

2) 震级上限 6.5 级潜在震源区

(1)发生过≥6级以上地震或古地震。

(2)发生在近北北东向深大断裂带上,具一定规模。全新世活动性不太强或在中更新世时期发生过地震活动。

(3)地震活动集中发生在断裂带及上盘内部发育的次级断裂,中-新 生代盆地陡深一侧,地貌反差明显和盆地结构复杂地段。

3) 震级上限 5.5~6.0 级潜在震源区

(1)发生过≥5.0级以上地震或古地震,但均未超过6.0级。

(2)具 6.5 级以上的发震构造条件的区域均有可能发生 5.5 或者 6.0 级 地震。

(3)主要集中发生在近北东至北北东向断裂带上,具一定规模。全新 世活动性不强或在中更新世时期发生过地震活动。

5.3.3 潜在震源区划分

5.3.3.1 区域潜在震源区

根据上述划分潜在震源区的原则和方法以及区域内强震构造条件,在 第五代《中国地震动参数区划图》潜在震源区综合方案基础上,根据收集 和整理现场调查获得的资料和参考前人在该地区的地震安全性评价工作中 的划分结果,结合本工作区域及近场区地震构造、地震活动环境的研究成 果,对近场和周围地区的潜在震源区边界及震级上限进行了复核。

本项目共划分 21 个潜在震源区,其中涉及 5.5 级潜源 2 个, 6.0 级潜源 17 个, 6.5 级潜源 1 个, 7.0 级潜源 1 个。详见表 5.3-1 和图 5.3-1。

衣 3.3-1		宿住辰你亾石朴、	山 枳 ∠ 辰 坂 上 സ	
地震统计区	No.	名称	面积(km ²)	Mu (M)
	1	应城	6156	6.0
	2	岳阳	4910	6.0
	3	嘉鱼	2285	5.5
	4	三里岗	1885	5.5
长江中游地震 统计区	5	黄陂	3555	6.0
	8	咸宁	3068	6.0
	9	崇阳	2571	6.0
	15	瑞昌	1893	6.0
	16	铜鼓	3466	6.0
	17	九江	4251	6.0
	18	永修	2554	6.0
	19	南昌	4766	6.0
	20	鄱阳	6163	6.0
	21	景德镇	4349	6.0
	6	麻城	3171	6.5
	7	新洲	2324	6.0
郯庐地震统计	10	霍山	5182	7.0
区	11	罗田	2113	6.0
	12	武穴	2583	6.0
	6 庫 7 第 7 第 10 百 11 3 12 1 13 清	潜山	5386	6.0
长江下游-南黄 海地震统计区	14	怀宁	3031	6.0

潜在震源区名称、面积及震级上限

5.3.3.2 背景潜在震源区

黄石经济技术开发区·铁山区位于长江中游地震统计区和郯庐地震统 计区的交界部位。其北西侧为华北平原地震统计区,南东侧为长江下游-南黄海地震统计区。其中,落在长江中游地震统计区的背景源震级上限均 为 5.0 级。总体上,区域共划分出 10 个背景性潜在震源区,其中震级上限 为 5.5 级的有 5 个,为 5.0 级的 5 个 (图 5.3-2)。

5.3.4 重点潜在震源区的描述

1) 麻城 M6.5 级潜在震源区(6号)

本区主控地震构造为北北东向麻城 - 团风断裂带北段, 在区内组成由 主断裂与西侧上盘黄土岗北北东向帚状断层束控制的北东向微断块结构, 并同时控制晚中生代 - 新生代麻城盆地的发育, 堆积厚度 3500~5000m, 其 东缘前白垩纪变质岩逆冲于白垩 - 古近系之上,多处断层泥 ESR 和 SEM 采 样测试年代值为中更新世。麻城盆地东缘断层三角面成排发育, 地貌反差 强烈,最大差异达千余米。阎家河沿主断裂带发育,东岸可见二级断阶。 黄土岗微断块西缘地貌差异鲜明,北东向帚状断层束控制举水宽谷。1932 年黄土岗 M6 级地震震中鹰山尖断裂发育高耸的碎裂断崖,巨大的硅化断层 角砾岩岩块崩落体构成危岩体,新构造活动迹象明显。1913 年麻城黄土岗 M5.0 级地震、1932 年麻城黄土岗 M6.0 级地震的发震构造即位于麻城盆地 (K₂-E)收敛端、断裂上盘的次级断层上。因此,依据地震构造条件和地 震重复原则,将麻城源震级上限划定为 M6.5 级。

该潜源区位于晚中生代 - 新生代麻城盆地南部的新洲至黄冈一带。区 内主控地震构造为北北东向麻城 - 团凤断裂带,北北西向青山口 - 黄陂断 裂带和北西向襄樊 - 广济断裂带在源区内复合、交汇。交汇区微地貌面差 异明显,如张渡湖沉溺,其东西两侧中下更新统构成高阶地岗地,下更新 统地层发生褶曲、断裂变形。新洲、阳逻中更新世地貌不连续,阳逻岗地 中、下更新统砾石层海拔明显高于断裂南侧,长江北东岸出现早第四纪断 崖陡坎,阳逻段河床基岩内发育北西向陡坎。阳逻地区雷家湾、海棠村等 地下、中更新统内发育多条次级断裂和红土破裂充填模,显示了该复合交 汇区的断裂系统在中更新世晚期活动明显。区内曾发生 1633 年黄冈北 M4¾ 级地震。依据地震构造类比原则,将新洲源震级上限划定为 M6.0 级。

3) 咸宁 M6.0 级潜在震源区(8号)

咸宁潜在源主控地震构造为北北东向麻城-团风断裂带南端段梁子湖 断裂,并与北东向赤壁-咸安断裂和咸宁-灵乡断裂汇交,梁子湖断裂控 制梁子湖拗陷(J-K-E-N)的发育,东缘断阶呈现线性断层谷,灰绿色断层 泥松散,雁列透镜体形态。梁子湖槽盆与其东侧岗地低丘陵区相比较,中 更新世微地貌面差异明显。此外,赤壁-咸安断裂亦是新近纪以来地貌单 元控制边界,有温泉群出露,官塘独山-官塘林场一线可见一排新鲜的断 层三角面-断崖半壁山。咸安城区发现北东向网纹红土破裂系统,断裂早 第四纪活动,曾发生1954年蒲圻 M4.8 级地震。温泉市区附近曾发生1993 年有感震群事件。

4) 崇阳 M6.0 级潜在震源区(9号)

崇阳潜在源主控地震构造为北北东向塘口断裂,线性断层谷地貌非常 清晰,斜切幕阜山区,断错中更新世强风化构造岩,中更新世明显活动。 塘口断裂南端与早第四纪活动的北东东向修水断裂构造带交汇复合。在这 一复合地带历史上曾发生过 M5½和 M5.0 级地震 2 次。因此,依据地震构 造类比和地震重复原则将崇阳潜源震级上限划定为 M6.0 级。

5) 霍山 M7.0 级潜在震源区(10号)

本区主控地震构造为北东向霍山-罗田地震构造带,与近东西向信阳-金寨断裂、桐柏-磨子潭断裂地震构造带构成立交孕震构造型式,区内重磁场异常鲜明,地壳厚度差异显著。它们第四纪以来活动明显,并有更新世活动的北东向霍山-罗田断裂斜切大别隆起轴部和霍山地堑(J-N),发育北东向线性断层谷和断崖,其北段在霍山盆地中城关附近多处可见近东西向和北东-北北东向次级断层切割中更新统红土阶地,TL断层泥测年值3~8.5 万年,SEM 法测定显示粘滑特征。落儿岭断层右旋断错杨树沟冲沟60m。1917 年霍山 M6¼级地震构造落儿岭断层组线性断层谷北端受截于高耸的北西向磨子潭断崖山,构成奇异的构造地貌景观。迄今已发生中等地震7次,其中 M6和 M6¼级地震2次。此外,1970年以来霍山地震区小震活动频繁,呈北西向和北东向共轭条带分布,北东向小震条带线性长度约30km。因此,依据地震构造条件和地震重复原则将霍山源震级上限划定为M7.0 级。

6) 罗田 M6.0 级潜在震源区(11号)

位于漏水、罗田、英山一带,区内主控地震构造北东-北北东向霍山 -罗田断裂带南西段和巴河断裂,呈右行雁列展布,有明显的地貌显示和 线性构造特征,断裂沿线有多处温泉出露分布。断层泥松软呈透镜体群产 出,ESR 年代测试值为中更新世。该两断裂于早-中更新世明显活动。历 史上先后于英山、罗田发生过1584年 M5½级地震和1634年 M5½级地震等。 故依据地震构造条件和中强震水平,将其潜源区震级上限划定为 M6.0 级。

7) 嘉鱼 M5.5 级潜在震源区(3号)

本潜源区主控断裂分为两条,北部为穿过嘉鱼县城的北东向隐伏嘉鱼 断裂, 南部为赤壁市(原蒲圻县)南侧的北东东向的五洪山-羊楼司断裂。 依据 20 世纪 70 年代湖北省 1:20 万蒲圻幅区域地质报告和江汉油田人工地 震勘探资料,嘉鱼断裂为已证实的隐伏断裂。林松等(2018)利用浅层地 震反射技术分析认为,断裂从洪湖老湾西南横切长江,沿经东西-北东东 向延展, 经嘉鱼县东北马鞍山北缘向东延伸于斧头湖, 长约 40km。嘉鱼断 裂与印支-燕山期形成,沿断裂有第四纪隐伏玄武岩分布,上白垩统-古 近系厚度在断裂南北两侧差异明显。断裂南侧发育四级阶地和两级剥夷面, 第四系厚度普遍小于 50m,且新近系一般缺失,北侧仅有河湖漫滩一级阶 地,Q1-Q2地层埋藏较深。1974年3月7日凌晨在嘉鱼县城东先后发生3.8 级和 3.9 级地震, 震中烈度V度, 等震线呈椭圆形, 长轴呈北东向。1992 年, 嘉鱼新街发生 M2.5 级地震, 表明该断裂深部现代活动仍较为明显。嘉鱼断 裂东端已有明显出露,而断裂尾部与沙湖-湘阴断裂交错,地处江汉平原, 断裂无明显出露。南部的五洪山-羊楼司断裂属于临湘-通山断裂带的北支, 西起长江以西,走向偏北西西向,往东经临湘、转北东东向经羊楼司至蒲 圻陆文水库。沿断裂带断崖、断层三角面及断层谷发育,有多处温泉出露。 蒲圻五洪山一带断裂两侧同级阶地发生位错,较充分显示断裂的活动性。

127

历史记载,1954年2月蒲圻县东石坑渡附近发生M4¾震群活动。因此,依据地震构造类比和地震重复原则将嘉鱼潜源震级上限划定为M5.5级。

8) 应城 M6.0 级潜在震源区(1号)

该潜在震源区控制性构造为北北东向通海口断裂带和北东东向潜北断裂东端段与北北西向皂市断裂南端段,是狭义江汉盆地东北缘地带。通海口断裂东侧沔阳凹陷,第四纪以来具有明显活动性,相关沉积厚度最大达250~300m。浅层地震反射显示通海口断裂、潜北断裂切割下更新统,皂市断裂控制了宋河 K₂-E 盆地红土台地西缘边界的发育,伴有显著的上白垩统大型张裂缝红土充填系统,地貌反差鲜明。历史上潜在源区曾发生过3次中强地震,即1630年汉川西 M5.0级、1630年 M5.0级老沔城地震和1470年武汉南西 M5.0级地震。近30年来,区内形成近南北向小震密集区带,2019年12月26日应城汤池附近就发生了 M4.9级地震。因此,依据地震构造类比和地震重复原则,将应城潜源震级上限划定为 M6.0级。

9) 瑞昌 M6.0 级潜在震源区(15号)

瑞昌潜在震源区走向北东,主控构造为北东向左行右阶展布的瑞昌断 裂-武宁断裂,并且北东东向武宁-修水断裂构造带与北东向瑞昌-武宁 断裂构造带在本潜在震源区中部相交汇,北西向襄樊-广济断裂带东端段 次级构造可能隐伏延入瑞昌源区北端 M5.7级地震震中区。瑞昌断裂是古近 纪瑞昌断拗盆地的控制构造,亦对左行右阶展布的两个第四纪槽地及其槽 地内河流水系非对称性的发育具有控制作用。瑞昌断裂、武宁断裂为早第 四纪活动构造带。瑞昌盆地西部红土台(Q₂)高程 40m,东部高程 20m, 差异明显。物探和钻探证实瑞昌断裂切割下更新统泥砾层。历史记载表明, 瑞昌-武宁断裂构造带曾发生 319 年 1 月靖安西北 M5¼级地震、1886 年 3

128

月 29 日铜鼓 M5¼级地震和 2005 年 11 月 26 日瑞昌 M5.7 级、4.8 级地震。 依据地震重复原则,本潜在震源区震级上限划定为 M6.0 级。

10) 三里岗 M5.5 级潜在震源区(4号)

本区内主要地震构造为北西向襄樊 - 广济断裂带大洪山北缘部段。 2006年10月27日在随州三里岗发生 M4.7级轻微破坏性地震,为前震、主 震、余震序列,最大余震 M4.2级,主震震源深度9.4km,北西走向逆掩断 层破裂作用机制。震中区为受襄樊 - 广济断裂控制的北西向坪坝断陷和麻 岩河断陷之间的三里岗岩桥,其岩桥长约8km,北西向边界断层段呈右行 左阶结构,并且阶区发育北东向横向断层,这一地震构造南西侧为低中山、 低山大洪山区,北东侧为丘陵岗地区,地貌反差较强。跨断层水系大都具 有左旋偏转特征,断层切割早第四纪坡积层,但未切割晚更新世洪积扇。 SEM 法断层泥鉴定表明早更新世曾有明显粘滑活动。地震监测表明:三里 岗震中区外围50~100km 范围内,近20余年来 M3.0~4.0级有感震较多,小 震繁杂,故三里岗潜源区震级上限划定为 M5.5级。

11) 黄陂 M6.0 级潜在震源区(5号)

该潜源主控地震构造为北西向襄樊 - 广济断裂带武汉段和北北西向青 山口 - 黄陂断裂带南东端段。北西向襄樊 - 广济断裂带控制孝感 - 横店中 更新世波岗状红土掀斜台地南缘,沿线发育串珠状湖泊洼地,呈现非连续 构造地貌面。在孝感 - 白水湖一线,断裂南侧为广阔的全新统河湖低平原, 发育埋藏阶地,孝感一带第四系最大厚度 160m。在盘龙城后湖东西一线, 发育第四纪断层河谷和中更新世低分水岭横向宋岗隆起,其断裂南侧盘龙 城条状微断块向西北翘升,上覆早 - 中更新世冲洪积砾石层最大高程约64m, 比断裂北侧红土台地对称部位高出约 35m。调查发现后湖南岸可见密集宽 大的北西向断裂带,错断早更新世姜黄色粉质粘土,跨后湖钻孔阵列剖面 揭示最新主断裂位于后湖北缘,断错中更新统红土,并可能错断上更新统 棕黄色粘土,断距约 36m。襄樊-广济断裂带武汉段南侧次级断裂自西而 东分别是北西向隔蒲断裂、柏泉团鱼山断裂和盘龙城露甲山断裂。前者断 裂两侧第四系厚度差达 80~90m,南升北降后者控制东西湖-汉水三角洲第 四纪沉降区与盘龙城中更新世断块翘升区之间的边界,差异幅度近百米; 唯团鱼山断裂南北两侧中更新统红土岗地地貌面相差仅约 10m。这均佐证 襄樊-广济断裂带中更新世明显活动,并且晚更新世亦有所活动迹象。北 北西向青山口-黄陂断裂带南东端段与襄樊-广济断裂带构成斜接交汇, 并在交汇部位形成第四纪阳逻长江断崖,差异幅度百余米。该断裂中、北 段展布地带现代有感(M3.0~4.0级)十余次。因此,依据构造类比原则,将 黄陂源震级上限划定为 M6.0 级。

12) 武穴 M6.0 级潜在震源区(12号)

武穴潜在震源区走向北西,主控构造为北西向襄樊-广济断裂带东端 段,并且北北东向郯庐断裂带南端段与之交汇于广济(即武穴),东西向阳 新断裂东端段延入源区内,构成较复杂的交汇条件。它们均为早第四纪活 动的断裂构造,对断块边界差异性构造地貌具有线性控制特征。前二者构 成具有中强震活动的东大别断块东南隅边界,后者控制东西向阳新盆地 (K₂-E)北缘本潜源区内曾发生1629年4月蕲黄间 M4¾级地震、1897年1 月5日阳新 M5级地震、1972年9月12日武穴田镇 M4.0级有感震和2011 年9月0日阳新枫林 M4.6级地震,并且近邻瑞昌北2005年11月26日发 生 M5.7级地震前后,本源区内有小震、微震响应。此外,尚有未入正式地 震目录的三次中等地震位于源区内,即1635年冬蕲黄间 M4¾级地震、1700 年5月4日蕲州东 M4¾地震和1841年6月17日阳新 M4¾级地震。依据地 震构造类比和地震活动重复原则,本潜在震源区震级上限划定为 M6.0级。

5.3.5 潜在震源区地震活动性参数的确定

5.3.5.1 空间分布函数 f_{i,mi}

在地震带内,须把地震带各震级档地震的年平均年发生率分配给各相应的潜在震源区。这里采用按震级档分配地震年平均发生率的方法,引进空间分布函数,根据各潜在震源区发生不同震级档地震可能性的大小,对地震年平均发生率进行不等权分配。空间分布函数*f_{i,m}*的物理含义是一个地震带内发生一次 m_j档震级的地震落在第 i 个潜在震源区内概率的大小。在同一地震带内*f_{i,m}*满足归一条件:

$$\sum_{i=1}^{n} f_{i,m_j} = 1$$
 (对不同震级档 m_j) (5.3-1)

这里 n 为地震带内具备发生第 mj 档地震的潜在震源区的总数。本工作 区 mj 共分成 7 个震级档,即 4.0~4.9、5.0~5.4、5.5~5.9、6.0~6.4、6.5~ 6.9、7.0~7.4、≥7.5。决定空间分布函数大小的因子考虑如下:

本区低震级档潜在震源区较多,空间分布函数确定时,主要考虑中小 地震空间分布密度(单位面积的发震概率),同时考虑不同的构造背景所反 映的地震危险性的类比,确定不同潜在震源区的地震平均发生率。

震级上限 6 级以上的潜在震源区,主要考虑以下几个因子:①以往区 划工作潜源参数;②实际地震活动水平;③地震构造背景地震危险性的类 比。

对目标区影响较大的潜在震源区空间分布函数列于表 5.3-2。 5.3.5.2 等震线长轴取向及分布概率

我国大陆地震等震线多呈椭圆形,地震烈度在长轴和短轴方向衰减特 征不同。在计算各潜在震源区对工业园区的影响时,必须确定长轴方向。 所以对每个潜在震源区都给出方向性因子:即给出互相垂直的两个可能的 长轴走向 θ₁和 θ₂和相应的概率值 P₁和 P₂。本区域内断裂活动以正和走滑为 主,各潜在震源长轴取向大多与各潜在震源区构造走向一致。具体数值见

表:	長 5.3-2 区域内主要潜在震源区的空间分布函数										
序号	名称	Mu	4.0-4.4	4.5-4.9	5.0-5.4	5.5-5.7	5.8-5.9	6.0-6.1	6.2-6.4	6.5-6.7	6.8-6.9
1	应城	6	0.00379	0.01118	0.01101	0.03597	0.04244	0	0	0	0
2	岳阳	6	0.00501	0.00444	0.01694	0.02069	0.02441	0	0	0	0
3	嘉鱼	5.5	0.00473	0.00375	0.00567	0	0	0	0	0	0
4	三里岗	5.5	0.00165	0.00654	0.00302	0	0	0	0	0	0
5	黄陂	6	0.00302	0.01296	0.00567	0.01688	0.01534	0	0	0	0
6	麻城	6.5	0.0027	0.01032	0.00466	0.00664	0.01691	0.01211	0.01248	0	0
7	新洲	6	0.00239	0.00909	0.00413	0.01315	0.01079	0	0	0	0
8	咸宁	6	0.0117	0.00237	0.0085	0.0204	0.02407	0	0	0	0
9	崇阳	6	0.00256	0.00403	0.01861	0.02115	0.02499	0	0	0	0
10	霍山	7	0.0073	0.00692	0.00901	0.01975	0.01255	0.03281	0.02093	0.07476	0.07086
11	罗田	6	0.00233	0.00401	0.01122	0.0125	0.01025	0	0	0	0
12	武穴	6	0.00229	0.00876	0.00398	0.00634	0.01577	0	0	0	0
13	潜山	6	0.00466	0.01009	0.00523	0.02477	0.02032	0	0	0	0
14	怀宁	6	0.00698	0.00683	0.0133	0.01659	0.01474	0	0	0	0
15	瑞昌	6	0.00541	0.0048	0.00689	0.02992	0.01382	0	0	0	0
16	铜鼓	6	0.00253	0.00207	0.02467	0.02263	0.02671	0	0	0	0
17	九江	6	0.00293	0.00239	0.0284	0.0285	0.03364	0	0	0	0
18	永修	6	0.00461	0.00659	0.00786	0.02358	0.02783	0	0	0	0
19	南昌	6	0.00299	0.00885	0.00876	0.02521	0.02976	0	0	0	0
20	鄱阳	6	0.00387	0.01137	0.01121	0.02433	0.0287	0	0	0	0
21	景德镇	6	0.00296	0.00239	0.02853	0.02677	0.03159	0	0	0	0
2	背景源	5.5	0.0298	0.03813	0.03679	0	0	0	0	0	0
4	背景源	5.5	0.00727	0.01166	0.0063	0	0	0	0	0	0
9	背景源	5.0	0.04369	0.04525	0	0	0	0	0	0	0

表 5.3-2。表中的角度是指断裂构造走向与正东方向间的夹角。

注: M_u 为各潜在震源区的上限; θ_1 、 θ_2 为等震线长轴取向角度; P_1 、 P_2 为相应分布概率。由于上表 中各潜在震源区内没有共轭断层存在,因此,表中没有列出 θ2和 P2。

表 5	5.3-3				潜在	震源	区方向	性函数					
序号	名称	Mu	θ_1	P ₁	θ_2	P ₂	序号	名称	Mu	θ_1	P ₁	θ_2	P ₂
1	应城	6	55	1	0	0		潜山	6	45	1	0	0
2	岳阳	6	55	1	0	0	13	怀宁	6	30	1	0	0
3	嘉鱼	5.5	55	1	0	0	14	瑞昌	6	45	1	0	0
4	三里岗	5.5	135	1	0	0	15	铜鼓	6	45	1	0	0
5	黄陂	6	135	1	0	0	16	九江	6	70	1	0	0
6	麻城	6.5	60	1	0	0	17	永修	6	70	1	0	0
7	新洲	6	65	1	0	0	18	南昌	6	70	1	0	0
8	咸宁	6	65	1	0	0	19	鄱阳	6	30	1	0	0
9	崇阳	6	65	1	0	0	20	景德镇	6	45	1	0	0
10	霍山	7	50	1	0	0	21	②背景	5.5	0	0.5	90	0.5
11	罗田	6	45	1	0	0		④背景	5.5	0	0.5	90	0.5
12	武穴	6	120	1	0	0		⑨背景	5.0	0	0.5	90	0.5

5.4 地震动衰减关系

地震动衰减关系是地震危险性分析中的重要环节。由于地震动衰减同 地震波传播路径中地壳介质的物理力学性质以及震源错动性质和场地土质 条件有关,因而具有明显的地区特点。

某个地区地震动衰减关系应该用该区的强震记录资料进行估计,但是 我国的强震记录资料很少,不足以统计出可靠的地震动衰减关系,通常采 用胡聿贤教授等得出的转换方法(胡聿贤,1984),借助某个参考区的地震 烈度、加速度峰值和加速度反应谱的衰减关系,并利用研究区地震烈度衰 减关系进行转换,得到研究地区的地震基岩水平加速度峰值和反应谱衰减 关系。

在基岩地震动衰减模型中,考虑到加速度峰值和反应谱的高频成份在 大震级和近场饱和特征,基岩水平加速度峰值和反应谱的衰减关系可依照 全国各分区水平向基岩地震动加速度反应谱预测方程(周期至 6s)(2019), 具体为:

1)当M<6.5时,

lg Y (M, R) = A₁+B₁ M- C lg (R + D exp(E*M))+ σ (1-a) 2) 当 M≥6.5 时,

lg $Y(M, R) = A_2 + B_2$ M- C lg $(R + D \exp(E^*M)) + \sigma(1-b)$

其中 *M* 为面波震级, *R* 为震中距, *A*₁、*A*₂、*B*₁、*B*₂、*C*、*D*、*E* 为模型 系数, σ 为衰减关系各周期的标准差。表 5.4-1、5.4-2 和 5.4-3 分别为水平 向基岩峰值加速度衰减关系和加速度反应谱衰减关系(长轴-短轴)。

在此次工作中,选用中国地震局地球物理研究所拟合的地震动衰减关系(表 5.4-1~5.4-3、表 5.4-4~5.4-6)。由于本次项目黄石经济技术开发区分为四个地块,并地块间存在一定地域跨度,依据全国分区水平向基岩地震

动反应谱预测方程定义分区,章山地块所处衰减关系分区为东部强震活跃 区,其包含了华北地震区除鄂尔多斯地震带的其它区域(银川-河套地震带、 汾渭地震带、华北平原地震带、郯庐地震带、长江下游-南黄海地震带)、 华南沿海地震带;汪仁地块、四棵地块及铁山地块所处衰减关系分区为中 强地震区,其包含了东北地震区、长江中游地震带、右江地震带、鄂尔多 斯地震带和塔里木-阿拉善地震带。

表 5.4-1 基岩地震动水平向峰值加速度 PGA(gal)衰减关系参数(椭圆模型)

114 157		6.5	级以下	6.5 级以上		系数			标准差
地区		A1	B1	A2	B2	С	D	Е	σ
东部区长	轴	2.024	0.673	3.565	0.435	2.329	2.088	0.399	0.245
东部区短轴		1.204	0.664	2.789	0.420	2.016	0.944	0.447	0.245
表 5.4-	-2	东部强震活跃区基岩水平向加速度反应谱预测方程模型系数(长轴							1)
T(s)		A1	B1	A2	B2	С	D	E	σ
0.04	2.048		0.674	3.617	0.432	2.322	2.088	0.399	0.261
0.05	2.205		0.654	3.706	0.423	2.319	2.088	0.399	0.266
0.07	2	2.315	0.650	3.774	0.425	2.307	2.088	0.399	0.265
0.10	2	2.456	0.640	3.903	0.417	2.297	2.088	0.399	0.261
0.12	2	2.493	0.637	3.855	0.427	2.294	2.088	0.399	0.261
0.16	2	2.617	0.632	3.798	0.449	2.306	2.088	0.399	0.261
0.20	2	2.558	0.643	3.680	0.470	2.309	2.088	0.399	0.261
0.24	2	2.320	0.675	3.632	0.472	2.290	2.088	0.399	0.264
0.26	2	2.094	0.696	3.541	0.472	2.249	2.088	0.399	0.270
0.30	1	.878	0.715	3.426	0.477	2.211	2.088	0.399	0.274
0.34	1	.852	0.715	3.304	0.491	2.212	2.088	0.399	0.273
0.40	1	.501	0.765	3.262	0.494	2.214	2.088	0.399	0.274
0.50	1	.358	0.776	3.026	0.519	2.214	2.088	0.399	0.276
0.60	1	.004	0.814	2.885	0.524	2.187	2.088	0.399	0.283
0.80	().650	0.847	2.608	0.545	2.174	2.088	0.399	0.291
1.00	().226	0.895	2.409	0.559	2.157	2.088	0.399	0.300
1.20	(0.006	0.917	2.227	0.574	2.159	2.088	0.399	0.315
1.50	-(0.095	0.909	1.843	0.610	2.154	2.088	0.399	0.330
1.70	-(0.196	0.909	1.621	0.629	2.143	2.088	0.399	0.338
2.00	-(0.666	0.936	1.247	0.641	2.047	2.088	0.399	0.342
2.40	-(0.781	0.917	0.709	0.687	2.011	2.088	0.399	0.343
3.00	-	1.014	0.920	0.279	0.720	1.972	2.088	0.399	0.340
4.00	-	1.244	0.909	-0.368	0.773	1.937	2.088	0.399	0.336
5.00	-	1.417	0.900	-0.880	0.817	1.906	2.088	0.399	0.333
6.00	-	1.432	0.859	-1.432	0.859	1.857	2.088	0.399	0.333
7.00	-	1.692	0.865	-1.692	0.865	1.803	2.088	0.399	0.336
8.00	-	1.862	0.875	-1.862	0.875	1.788	2.088	0.399	0.342
9.00	-2	2.113	0.885	-2.113	0.885	1.743	2.088	0.399	0.346
10.00	-2	2.177	0.879	-2.177	0.879	1.730	2.088	0.399	0.352

注: σ为标准差; 适用范围 M 5.0-8.5、R 0-200km

T(s)	A1	B1	A2	B2	С	D	Е	σ
0.04	1.241	0.663	2.837	0.418	2.010	0.944	0.447	0.261
0.05	1.393	0.645	2.933	0.408	2.007	0.944	0.447	0.266
0.07	1.517	0.639	3.005	0.411	1.997	0.944	0.447	0.265
0.10	1.665	0.629	3.140	0.402	1.988	0.944	0.447	0.261
0.12	1.707	0.625	3.091	0.412	1.985	0.944	0.447	0.261
0.16	1.814	0.622	3.053	0.431	1.997	0.944	0.447	0.261
0.20	1.779	0.628	2.918	0.454	1.999	0.944	0.447	0.261
0.24	1.533	0.662	2.868	0.457	1.983	0.944	0.447	0.264
0.26	1.309	0.685	2.786	0.458	1.948	0.944	0.447	0.270
0.30	1.095	0.707	2.677	0.464	1.915	0.944	0.447	0.274
0.34	1.068	0.706	2.558	0.477	1.916	0.944	0.447	0.273
0.40	0.698	0.759	2.501	0.482	1.919	0.944	0.447	0.274
0.50	0.557	0.769	2.265	0.507	1.919	0.944	0.447	0.276
0.60	0.196	0.810	2.122	0.514	1.897	0.944	0.447	0.283
0.80	-0.162	0.844	1.851	0.535	1.887	0.944	0.447	0.291
1.00	-0.599	0.895	1.644	0.550	1.873	0.944	0.447	0.300
1.20	-0.815	0.915	1.455	0.567	1.875	0.944	0.447	0.315
1.50	-0.910	0.907	1.087	0.600	1.871	0.944	0.447	0.330
1.70	-1.000	0.906	0.869	0.619	1.861	0.944	0.447	0.338
2.00	-1.449	0.934	0.516	0.632	1.779	0.944	0.447	0.342
2.40	-1.524	0.911	0.002	0.677	1.748	0.944	0.447	0.343
3.00	-1.733	0.912	-0.414	0.710	1.716	0.944	0.447	0.340
4.00	-1.932	0.898	-1.038	0.761	1.686	0.944	0.447	0.336
5.00	-2.075	0.887	-1.532	0.804	1.659	0.944	0.447	0.333
6.00	-2.041	0.841	-2.041	0.841	1.617	0.944	0.447	0.333
7.00	-2.287	0.848	-2.287	0.848	1.570	0.944	0.447	0.336
8.00	-2.455	0.858	-2.455	0.858	1.558	0.944	0.447	0.342
9.00	-2.693	0.869	-2.693	0.869	1.519	0.944	0.447	0.346
10.00	-2.753	0.863	-2.753	0.863	1.508	0.944	0.447	0.352

表 5.4-3 东部强震活跃区基岩水平向加速度反应谱预测方程模型系数(短轴)

注: σ为标准差;适用范围 M 5.0-8.5、R 0-200km

表 5.4-4 基岩地震动水平向峰值加速度 PGA(gal)衰减关系参数(椭圆模型)

th IZ	6.5级以下		6.5 级以上			标准差		
	A1	B1	A2	B2	С	D	Е	σ
中强地震区长轴	2.452	0.499	3.808	0.290	2.092	2.802	0.295	0.245
中强地震区短轴	1.738	0.475	2.807	0.310	1.734	1.295	0.331	0.245

T(s)	Δ1	R1		B2	С		F	G
0.04	2 492	0.400	2 702	0.209	2.086	2 802	0.205	0.261
0.04	2.482	0.499	3.792	0.298	2.080	2.802	0.295	0.261
0.05	2.626	0.482	3.948	0.279	2.083	2.802	0.295	0.266
0.07	2.738	0.479	4.004	0.283	2.072	2.802	0.295	0.265
0.10	2.877	0.469	4.087	0.283	2.063	2.802	0.295	0.261
0.12	2.917	0.466	4.058	0.290	2.060	2.802	0.295	0.261
0.16	3.032	0.461	4.244	0.275	2.071	2.802	0.295	0.261
0.20	2.992	0.468	3.969	0.318	2.072	2.802	0.295	0.261
0.24	2.760	0.500	3.883	0.327	2.056	2.802	0.295	0.264
0.26	2.535	0.523	3.772	0.332	2.020	2.802	0.295	0.270
0.30	2.320	0.544	3.632	0.341	1.985	2.802	0.295	0.274
0.34	2.298	0.542	3.523	0.353	1.986	2.802	0.295	0.273
0.40	1.958	0.591	3.430	0.364	1.989	2.802	0.295	0.274
0.50	1.822	0.600	3.240	0.382	1.988	2.802	0.295	0.276
0.60	1.478	0.638	3.009	0.401	1.965	2.802	0.295	0.283
0.80	1.135	0.669	2.771	0.417	1.953	2.802	0.295	0.291
1.00	0.720	0.716	2.525	0.438	1.938	2.802	0.295	0.300
1.20	0.515	0.735	2.305	0.459	1.940	2.802	0.295	0.315
1.50	0.416	0.727	2.055	0.475	1.935	2.802	0.295	0.330
1.70	0.318	0.727	1.838	0.492	1.924	2.802	0.295	0.338
2.00	-0.147	0.756	1.434	0.512	1.838	2.802	0.295	0.342
2.40	-0.255	0.737	0.987	0.546	1.804	2.802	0.295	0.343
3.00	-0.483	0.741	0.611	0.572	1.769	2.802	0.295	0.340
4.00	-0.704	0.729	0.087	0.607	1.735	2.802	0.295	0.336
5.00	-0.871	0.720	-0.349	0.640	1.706	2.802	0.295	0.333
6.00	-0.836	0.673	-0.836	0.673	1.660	2.802	0.295	0.333
7.00	-1.096	0.681	-1.096	0.681	1.611	2.802	0.295	0.336
8.00	-1.263	0.691	-1.263	0.691	1.598	2.802	0.295	0.342
9.00	-1.516	0.703	-1.516	0.703	1.557	2.802	0.295	0.346
10.00	-1.586	0.698	-1.586	0.698	1.543	2.802	0.295	0.352

表 5.4-5 中强地震区基岩水平向加速度反应谱预测方程模型系数(长轴)

注: σ为标准差; 适用范围 M 5.0-8.5、R 0-200km

T(s)	A1	B1	A2	B2	С	D	Е	σ
0.04	1.782	0.473	2.769	0.321	1.729	1.295	0.331	0.261
0.05	1.919	0.458	2.954	0.298	1.727	1.295	0.331	0.266
0.07	2.039	0.453	3.019	0.302	1.718	1.295	0.331	0.265
0.10	2.189	0.443	3.101	0.303	1.711	1.295	0.331	0.261
0.12	2.234	0.439	3.085	0.308	1.708	1.295	0.331	0.261
0.16	2.308	0.441	3.325	0.283	1.717	1.295	0.331	0.261
0.20	2.303	0.442	3.027	0.330	1.718	1.295	0.331	0.261
0.24	2.071	0.474	2.916	0.343	1.703	1.295	0.331	0.264
0.26	1.846	0.498	2.788	0.353	1.672	1.295	0.331	0.270
0.30	1.640	0.519	2.645	0.364	1.643	1.295	0.331	0.274
0.34	1.616	0.518	2.558	0.373	1.643	1.295	0.331	0.273
0.40	1.263	0.568	2.423	0.389	1.643	1.295	0.331	0.274
0.50	1.126	0.577	2.234	0.406	1.642	1.295	0.331	0.276
0.60	0.791	0.613	1.975	0.431	1.622	1.295	0.331	0.283
0.80	0.433	0.647	1.734	0.446	1.610	1.295	0.331	0.291
1.00	0.016	0.695	1.465	0.471	1.596	1.295	0.331	0.300
1.20	-0.183	0.712	1.221	0.495	1.597	1.295	0.331	0.315
1.50	-0.290	0.706	1.020	0.503	1.592	1.295	0.331	0.330
1.70	-0.375	0.704	0.819	0.519	1.583	1.295	0.331	0.338
2.00	-0.826	0.736	0.445	0.540	1.510	1.295	0.331	0.342
2.40	-0.915	0.716	0.069	0.564	1.481	1.295	0.331	0.343
3.00	-1.128	0.719	-0.276	0.587	1.451	1.295	0.331	0.340
4.00	-1.334	0.706	-0.739	0.614	1.423	1.295	0.331	0.336
5.00	-1.482	0.697	-1.121	0.641	1.398	1.295	0.331	0.333
6.00	-1.422	0.649	-1.422	0.649	1.361	1.295	0.331	0.333
7.00	-1.671	0.658	-1.671	0.658	1.320	1.295	0.331	0.336
8.00	-1.839	0.668	-1.839	0.668	1.308	1.295	0.331	0.342
9.00	-2.074	0.680	-2.074	0.680	1.273	1.295	0.331	0.346
10.00	-2.141	0.676	-2.141	0.676	1.262	1.295	0.331	0.352

表 5.4-6 中强地震区基岩水平向加速度反应谱预测方程模型系数(短轴)

注: σ为标准差;适用范围 M 5.0-8.5、R 0-200km

5.5 地震危险性分析结果

根据前面所确定的潜在震源区、地震活动性参数及基岩地震动衰减关 系,按照前述地震危险性概率分析方法,对目标区工程场地的共计25个计 算控制点(钻孔点)进行危险性分析计算(图 5.5-1),计算得到了各点地震

危险性超越概率曲线和50超越概率63%、10%、2%和100年超越概率63%、

目标区计算控制点 50 年 10%超越概率水平的计算结果在 56-59 之间, 考虑场地条件的影响,基岩峰值加速度的计算值与《中国地震动参数区划 图》(GB18306-2015)中给出的目标区平均场地上的地震动分区(0.05g) 符合。

由表 5.5-1 可以看出同一地块内的各个计算点结果差别不是很大,考虑 到结构抗震设计的便利,将目标区各划为四个地震危险性分区,取每个地 块的最大值作为各自地块的地震危险性分析结果,即计算点 3(HSZK20)、 计算点 4(HSZK01)、计算点 20(HSZK17)及计算点 24(HSZK22)的结 果分别作为章山地块、汪仁地块、四棵地块及铁山地块的危险性分析结果。 4 个计算点的基岩水平加速度地震反应谱值见表 5.5-2~5.5-9; 基岩水平峰 值加速度超越概率曲线及若干超越概率水平下基岩水平加速度反应谱见图 5.5-2~5.5-9。

地块	计算点	钻孔	50)年超越概	率		100 年赴	超越概率	
分区	编号	编号	63%	10%	2%	63%	10%	2%	1%
(1)	1	HSZK18	15.07	56.56	116.70	24.26	79.34	151.91	192.49
章山	2	HSZK19	15.08	56.74	117.40	24.29	79.70	153.31	193.99
地块	3	HSZK20	15.12	57.14	118.12	24.39	80.29	154.54	195.25
	4	HSZK01	18.04	58.72	110.11	27.51	78.95	138.93	169.72
	5	HSZK02	17.80	58.52	109.15	27.50	78.35	137.00	167.66
	6	HSZK03	17.81	58.58	109.72	27.53	78.44	137.14	167.26
	7	HSZK04	17.76	58.33	107.86	27.41	78.04	136.15	166.53
2))T/-	8	HSZK05	17.79	58.47	108.45	27.48	78.24	136.88	166.95
江 一 地块	9	HSZK06	17.76	58.32	107.85	27.42	78.03	136.10	165.88
	10	HSZK07	17.68	58.05	106.51	27.28	77.47	134.36	164.27
	11	HSZK08	17.66	57.97	105.92	27.25	77.27	133.66	162.70
	12	HSZK09	18.53	57.92	104.77	27.80	76.85	131.54	159.51
	13	HSZK11	18.54	57.54	104.89	27.81	76.97	132.22	160.42
	14	HSZK10	18.42	57.93	103.80	27.62	76.12	129.43	158.74
	15	HSZK12	18.55	57.92	104.60	27.80	76.79	131.32	159.03
	16	HSZK13	18.37	57.42	102.81	27.70	75.49	127.65	157.96
(3)	17	HSZK14	18.45	57.63	103.76	27.66	76.17	129.21	157.69
四棵	18	HSZK15	18.41	57.50	103.47	27.60	75.86	128.16	157.60
地块	19	HSZK16	18.48	57.72	104.24	27.71	76.36	131.08	158.33
	20	HSZK17	19.00	57.96	104.97	28.37	76.67	132.30	160.66
	21	HSZK24	18.93	57.34	101.42	27.27	75.37	126.37	151.59
	22	HSZK25	18.99	57.36	101.29	27.32	75.35	126.11	151.26
(4)	23	HSZK21	19.72	55.95	96.02	28.62	72.33	117.37	142.06
铁山	24	HSZK22	19.82	56.41	97.18	28.80	73.15	118.67	143.81
地块	25	HSZK23	19.74	55.85	95.86	28.61	72.18	117.22	141.88

表 5.5-1 钻孔基岩水平加速度地震危险性概率分析结果(加速度单位-gal)

Amax (gal)	5	20	50	100	150	200	300	400
1年	6.80E-02	1.33E-02	2.72E-03	6.02E-04	2.14E-04	9.20E-05	2.24E-05	6.68E-06
50年	9.70E-01	4.89E-01	1.27E-01	2.97E-02	1.07E-02	4.59E-03	1.12E-03	3.34E-04
100 年	9.99E-01	7.39E-01	2.39E-01	5.84E-02	2.12E-02	9.16E-03	2.24E-03	6.68E-04

表 5.5-2 章山地块(HSZK20)T 年内基岩水平峰值加速度超越概率表

表 5.5-3 章山地块(HSZK20)基岩水平向加速度反应谱值(单位: gal, 5%阻尼比)

T (a)		50 年超越概率	<u>x</u>		100 年走	超越概率	
1 (8)	63%	10%	2%	63%	10%	2%	1%
PGA	15.12	57.14	118.12	24.39	80.29	154.54	195.25
0.04	17.01	65.23	137.17	27.55	92.17	177.85	226.46
0.05	19.94	76.28	158.30	32.37	108.26	205.59	262.45
0.07	25.77	97.68	200.76	41.66	139.10	263.47	333.56
0.1	33.26	125.10	254.30	53.64	175.38	331.30	417.31
0.12	35.36	133.63	271.33	57.07	185.87	348.85	440.95
0.16	41.96	158.05	321.24	67.65	220.43	414.81	522.52
0.2	41.06	155.08	316.97	66.36	217.25	410.03	517.58
0.24	37.00	141.06	292.36	59.58	198.08	383.06	486.62
0.26	33.47	127.52	268.55	54.02	179.85	351.53	449.82
0.3	30.07	114.88	243.58	48.47	164.31	324.01	415.64
0.34	27.97	106.63	225.55	44.94	151.29	298.44	385.12
0.4	21.88	85.70	187.41	35.57	124.07	250.63	327.62
0.5	17.91	70.43	155.75	29.13	102.27	208.65	273.45
0.6	13.96	56.65	127.70	22.87	82.53	172.39	224.95
0.8	9.65	40.19	92.25	15.97	59.43	126.52	166.78
1	6.89	30.28	71.54	11.64	45.37	98.22	131.69
1.2	5.45	24.62	59.10	9.32	37.29	81.65	109.72
1.5	4.33	18.93	45.31	7.01	28.57	63.01	84.30
1.7	3.77	16.11	38.83	6.03	24.39	54.10	72.25
2	2.63	11.58	28.12	4.47	17.64	39.04	52.53
2.4	1.83	8.40	19.75	3.41	12.50	27.27	36.56
3	1.33	5.95	14.11	2.26	9.02	19.38	25.77
4	0.80	3.97	8.43	1.38	5.24	11.35	14.99
5	0.54	2.65	5.74	0.93	4.12	7.90	10.25
6	0.45	1.79	4.42	0.71	2.91	5.39	6.99
7	0.38	1.40	3.57	0.50	1.94	4.54	5.42
8	0.33	1.09	2.89	0.46	1.72	4.06	4.79
9	0.26	0.89	1.98	0.40	1.37	3.27	4.27
10	0.22	0.78	1.80	0.37	1.12	2.64	3.81

图 5.5-3 章山地块(HSZK20)基岩水平向加速度反应谱(单位: gal, 5%阻尼比)

Amax (gal)	5	20	50	100	150	200	300	400
1年	1.01E-01	1.67E-02	3.02E-03	5.19E-04	1.47E-04	5.25E-05	9.63E-06	2.28E-06
50年	9.95E-01	5.70E-01	1.40E-01	2.56E-02	7.32E-03	2.62E-03	4.81E-04	1.14E-04
100 年	1.00E+0	8.15E-01	2.61E-01	5.06E-02	1.46E-02	5.24E-03	9.63E-04	2.28E-04

表 5.5-4 汪仁地块(HSZK01) T 年内基岩水平峰值加速度超越概率表

表 5.5-5 汪仁地块(HSZK01)基岩水平向加速度反应谱值(单位: gal, 5%阻尼比)

Τ()	:	50 年超越概率	<u> </u>		100 年走	召越概率	
1 (s)	63%	10%	2%	63%	10%	2%	1%
PGA	18.04	58.72	110.11	27.51	78.95	138.93	169.72
0.04	20.34	67.37	127.78	31.25	90.90	160.73	196.53
0.05	23.99	79.12	148.63	36.78	107.79	186.93	230.39
0.07	31.13	102.05	190.73	47.54	139.12	239.76	294.39
0.1	39.82	130.81	240.62	60.76	174.85	299.57	368.81
0.12	42.82	140.07	257.45	65.38	186.66	322.59	392.50
0.16	50.12	164.46	302.07	76.70	219.31	379.28	462.23
0.2	49.65	163.18	299.93	76.03	217.94	377.34	460.01
0.24	44.53	146.35	276.97	68.09	197.33	346.25	428.33
0.26	39.95	131.95	248.57	60.88	177.71	317.28	392.59
0.3	35.85	117.09	224.47	54.69	160.27	287.83	357.39
0.34	33.38	109.24	208.41	50.61	148.12	267.44	332.93
0.4	26.17	87.24	172.25	40.01	119.75	220.44	281.04
0.5	21.35	71.55	142.56	32.82	98.57	182.43	231.50
0.6	16.50	56.59	113.82	25.41	78.25	147.76	188.02
0.8	11.42	39.87	81.66	17.76	56.25	107.98	139.24
1	8.30	29.78	62.66	12.96	42.29	82.87	107.89
1.2	6.51	24.30	51.88	10.29	34.66	68.93	89.48
1.5	4.95	18.83	40.10	8.01	26.83	53.95	69.73
1.7	4.44	16.03	34.37	6.73	22.99	45.83	59.73
2	3.28	11.41	24.56	4.82	16.38	32.97	42.91
2.4	2.21	8.32	17.36	3.85	11.65	23.13	29.93
3	1.62	5.90	12.32	2.70	8.49	16.35	21.18
4	0.94	3.98	7.17	1.56	4.92	9.59	12.21
5	0.68	2.65	4.96	1.01	3.98	6.58	8.62
6	0.50	1.82	4.21	0.82	2.80	4.84	6.01
7	0.44	1.43	3.24	0.60	1.89	4.21	4.79
8	0.39	1.10	2.42	0.49	1.66	3.63	4.42
9	0.33	0.90	1.85	0.44	1.29	2.62	3.74
10	0.29	0.80	1.68	0.41	1.04	1.98	3.17

图 5.5-5 汪仁地块(HSZK01)基岩水平向加速度反应谱(单位: gal, 5%阻尼比)

Amax (gal)	5	20	50	100	150	200	300	400
1年	1.11E-01	1.84E-02	2.70E-03	3.53E-04	7.80E-05	2.21E-05	2.57E-06	3.48E-07
50年	9.97E-01	6.04E-01	1.26E-01	1.75E-02	3.89E-03	1.10E-03	1.28E-04	1.74E-05
100 年	1.00E+0	8.43E-01	2.37E-01	3.47E-02	7.77E-03	2.21E-03	2.57E-04	3.48E-05

表 5.5-6 四棵地块(HSZK17) T 年内基岩水平峰值加速度超越概率表

表 5.5-7 四棵地块(HSZK17)基岩水平向加速度反应谱值(单位: gal, 5%阻尼比)

T (-)		50 年超越概率	<u>k</u>		100 年走	超越概率	
1 (S)	63%	10%	2%	63%	10%	2%	1%
PGA	19.00	57.96	104.97	28.37	76.67	132.30	160.66
0.04	21.43	66.64	120.68	32.28	88.42	149.99	183.36
0.05	25.24	78.25	143.15	37.99	104.46	176.56	214.43
0.07	32.83	100.57	181.48	49.05	135.33	225.64	277.05
0.1	42.06	129.01	229.39	62.90	170.19	285.18	343.40
0.12	45.07	138.38	244.82	67.45	180.57	301.55	367.18
0.16	53.10	162.19	289.61	79.07	213.02	355.69	431.90
0.2	52.57	160.94	288.15	78.43	211.63	353.53	429.99
0.24	46.87	145.16	264.70	70.07	192.52	329.48	399.02
0.26	41.95	131.20	240.28	62.87	174.61	299.81	370.59
0.3	37.50	116.85	217.19	56.28	157.54	276.38	339.35
0.34	34.80	108.98	201.41	52.25	146.22	254.26	315.03
0.4	27.25	87.34	168.25	41.18	118.72	212.82	267.48
0.5	22.21	71.70	139.53	33.68	97.72	176.50	219.54
0.6	17.10	56.88	111.98	26.07	77.97	144.29	179.88
0.8	11.81	40.19	80.57	18.21	56.27	105.32	134.65
1	8.58	30.10	62.32	13.27	42.52	81.43	104.69
1.2	6.71	24.57	51.70	10.55	34.85	68.13	87.55
1.5	5.11	19.05	39.97	8.22	26.99	53.26	68.41
1.7	4.55	16.22	34.30	6.87	23.15	45.27	58.73
2	3.39	11.56	24.62	4.89	16.54	32.80	42.34
2.4	2.32	8.44	17.40	3.93	11.75	22.99	29.57
3	1.66	5.98	12.36	2.78	8.57	16.28	20.92
4	0.96	4.03	7.19	1.59	4.94	9.55	12.00
5	0.71	2.70	4.96	1.04	4.01	6.55	8.52
6	0.51	1.84	4.22	0.83	2.84	4.83	5.94
7	0.44	1.45	3.25	0.62	1.90	4.21	4.77
8	0.40	1.13	2.43	0.49	1.67	3.63	4.41
9	0.34	0.90	1.86	0.45	1.31	2.62	3.73
10	0.30	0.81	1.69	0.42	1.06	1.98	3.15

图 5.5-7 四棵地块(HSZK17)基岩水平向加速度反应谱(单位: gal, 5%阻尼比)

Amax (gal)	5	20	50	100	150	200	300	400
1年	1.10E-01	1.81E-02	2.60E-03	3.33E-04	7.24E-05	2.02E-05	2.24E-06	2.81E-07
50年	9.97E-01	5.98E-01	1.22E-01	1.65E-02	3.61E-03	1.01E-03	1.12E-04	1.41E-05
100 年	1.00E+0	8.38E-01	2.30E-01	3.28E-02	7.21E-03	2.02E-03	2.24E-04	2.81E-05

表 5.5-8 铁山地块(HSZK22) T 年内基岩水平峰值加速度超越概率表

表 5.5-9 铁山地块(HSZK22)基岩水平向加速度反应谱值(单位: gal, 5%阻尼比)

Τ()	:	50 年超越概率	<u> </u>		100 年走	B 越概率	
1 (s)	63%	10%	2%	63%	10%	2%	1%
PGA	19.82	56.41	97.18	28.80	73.15	118.67	143.81
0.04	22.46	64.91	114.23	32.87	84.79	141.13	169.26
0.05	26.52	76.28	135.11	38.74	99.33	164.81	196.16
0.07	34.44	97.97	171.82	50.01	129.24	208.85	250.08
0.1	44.19	125.02	214.72	64.26	162.89	263.83	315.33
0.12	47.50	134.76	230.13	68.78	173.76	282.42	336.58
0.16	55.93	157.27	272.54	80.67	203.16	331.23	394.20
0.2	55.38	156.06	271.03	79.91	201.81	329.70	392.80
0.24	49.01	142.08	247.36	71.47	184.59	304.07	367.89
0.26	43.67	128.38	227.37	63.99	169.08	283.01	340.93
0.3	38.87	115.18	207.07	57.13	152.12	257.97	314.08
0.34	36.14	107.11	192.23	53.11	142.45	239.03	291.44
0.4	28.08	86.31	160.97	41.64	116.22	199.75	245.72
0.5	22.87	70.79	133.93	34.01	95.52	167.42	203.76
0.6	17.54	56.57	108.09	26.30	76.77	137.67	169.37
0.8	12.01	40.05	78.30	18.34	55.61	99.56	125.07
1	8.71	30.13	60.56	13.33	42.21	78.09	97.88
1.2	6.79	24.61	50.38	10.60	34.68	65.69	82.72
1.5	5.21	19.05	39.22	8.28	26.82	51.14	65.18
1.7	4.61	16.23	33.69	6.91	22.99	43.87	56.25
2	3.45	11.58	24.29	4.90	16.49	31.92	40.51
2.4	2.37	8.45	17.10	3.96	11.71	22.36	28.50
3	1.69	6.00	12.16	2.80	8.55	15.89	20.09
4	0.97	4.03	7.06	1.60	4.94	9.39	11.65
5	0.72	2.70	4.93	1.05	4.00	6.43	8.21
6	0.52	1.84	4.19	0.84	2.82	4.80	5.73
7	0.45	1.45	3.22	0.63	1.90	4.17	4.73
8	0.40	1.13	2.39	0.49	1.67	3.58	4.36
9	0.34	0.90	1.85	0.45	1.31	2.54	3.65
10	0.31	0.81	1.68	0.42	1.05	1 97	3.06

图 5.5-9 铁山地块(HSZK22)基岩水平向加速度反应谱(单位: gal, 5%阻尼比)

目标区面积相对较小,周边地震构造环境简单,变化不大。但考虑到 本次工作对目标区进行分块计算,故在每个地块分区各取代表性钻孔分析 潜在震源区贡献率(见表 5.5-10~5.5-17)。由贡献率可以看出,对场地基岩 地震动峰值加速度的影响主要来自周边的中等震级潜在震源区和所在的背 景源影响。

对于章山地块,对地震危险性起主要影响的潜源区为场地所在的武穴 (12)6.0级潜在震源区,以及9号5.0级背景源和2号5.5级背景源,其 次为罗田(11)6.0级潜在震源区、潜山(13)6.0级潜在震源区、霍山(10) 6.0级潜在震源区以及4号5.5级背景源。

对于汪仁地块、四棵地块,对地震危险性起主要影响的潜源区为场地 所在的武穴(12)6.0级潜在震源区,以及9号5.0级背景源和2号5.5级 背景源,其次为新洲(7)6.0级潜在震源区、罗田(11)6.0级潜在震源区、 潜山(13)6.0级潜在震源区、咸宁(8)6.0级潜在震源区以及4号5.5级 背景源。

相比汪仁地块、四棵地块,铁山地块对地震危险性影响最大的潜源区 仍为武穴(12)6.0级潜在震源区,但贡献率明显减少,而9号背景源影响 增大。这一结果与场地周边地震活动特征和场地所处的地震构造环境是协 调的。

	5	10	20	50	100	150	200	300	400
⑨背景源	9.26E-03	3.90E-03	1.22E-03	1.26E-04	9.48E-06	1.25E-06	1.79E-07	0.00E+00	0.00E+00
④背景源	5.56E-03	2.46E-03	8.20E-04	1.05E-04	1.16E-05	2.26E-06	5.36E-07	5.96E-08	0.00E+00
②背景源	1.28E-02	6.26E-03	2.54E-03	4.74E-04	7.64E-05	1.90E-05	5.78E-06	7.15E-07	1.19E-07
(11) 罗田	6.34E-03	3.08E-03	9.99E-04	8.71E-05	4.71E-06	3.58E-07	0.00E+00	0.00E+00	0.00E+00
(13) 潜山	4.43E-03	1.88E-03	6.16E-04	6.44E-05	4.29E-06	4.17E-07	5.96E-08	0.00E+00	0.00E+00
(12) 武穴	9.97E-03	8.36E-03	5.37E-03	1.73E-03	4.88E-04	1.90E-04	8.54E-05	2.16E-05	6.56E-06
(10) 霍山	1.88E-03	1.03E-03	4.60E-04	6.69E-05	5.30E-06	5.96E-07	5.96E-08	0.00E+00	0.00E+00

表 5.5-10 潜在震源区对计算点 3(HSZK20)基岩水平峰值加速度的贡献值

W 5.5 11			7T /// 5 (1	10211207	2 11 100 T 28					
进去雪沥口	5	0年超越概率	<u>×</u>		100 年超越概率					
俗任辰 你区	63%	10%	2%	63%	10%	2%	1%			
⑨背景源	10.11%	3.94%	1.09%	8.14%	2.40%	0.54%	0.24%			
④背景源	6.58%	3.46%	1.53%	5.61%	2.50%	1.00%	0.66%			
②背景源	18.61%	16.77%	11.12%	18.67%	14.57%	8.55%	6.49%			
(11) 罗田	8.27%	2.60%	0.46%	6.55%	1.35%	0.15%	0.00%			
(13) 潜山	5.01%	1.99%	0.46%	4.16%	1.15%	0.18%	0.06%			
(12) 武穴	33.01%	66.99%	84.57%	44.36%	75.87%	89.33%	92.49%			
(10) 霍山	4.73%	2.28%	0.59%	4.21%	1.38%	0.24%	0.06%			

表 5.5-11 主要潜在震源对计算点 3(HSZK20)多种概率贡献百分比表

表 5.5-12 主要潜在震源区对计算点 4(HSZK01)基岩水平峰值加速度的贡献值

	5	10	20	50	100	150	200	300	400
⑨背景源	1.60E-02	7.22E-03	2.57E-03	3.40E-04	3.18E-05	4.77E-06	8.34E-07	0.00E+00	0.00E+00
(8) 咸宁	9.91E-03	2.94E-03	6.72E-04	4.76E-05	2.03E-06	1.19E-07	0.00E+00	0.00E+00	0.00E+00
④背景源	7.07E-03	2.94E-03	8.64E-04	8.36E-05	6.68E-06	1.01E-06	1.79E-07	0.00E+00	0.00E+00
②背景源	1.81E-02	8.71E-03	3.51E-03	6.42E-04	9.44E-05	2.15E-05	6.08E-06	6.56E-07	5.96E-08
(7)新洲	8.01E-03	3.05E-03	7.39E-04	4.37E-05	1.55E-06	5.96E-08	0.00E+00	0.00E+00	0.00E+00
(11) 罗田	8.40E-03	4.11E-03	1.29E-03	1.04E-04	5.13E-06	3.58E-07	0.00E+00	0.00E+00	0.00E+00
(13) 潜山	5.68E-03	2.19E-03	5.80E-04	4.15E-05	1.79E-06	1.19E-07	0.00E+00	0.00E+00	0.00E+00
(12) 武穴	1.02E-02	8.95E-03	5.97E-03	1.81E-03	4.14E-04	1.33E-04	5.16E-05	1.03E-05	2.62E-06

表 5.5-13 主要潜在震源区对计算点 4(HSZK01)多种概率贡献百分比表

洪大雪沥口	5	0年超越概率	<u>8</u>		100 年走	舀越概率	
盾任辰际区	63%	10%	2%	63%	10%	2%	1%
⑨背景源	15.21%	9.56%	4.83%	13.94%	7.30%	3.27%	2.09%
(8) 咸宁	4.22%	1.15%	0.26%	2.96%	0.63%	0.09%	0.00%
④背景源	5.27%	2.23%	1.00%	4.17%	1.60%	0.69%	0.43%
②背景源	20.34%	19.86%	15.95%	20.86%	18.40%	13.80%	11.79%
(7)新洲	4.66%	1.01%	0.17%	3.12%	0.51%	0.06%	0.00%
(11) 罗田	7.87%	2.56%	0.65%	6.08%	1.49%	0.28%	0.06%
(13) 潜山	3.61%	1.00%	0.23%	2.60%	0.56%	0.06%	0.00%
(12) 武穴	32.51%	62.02%	76.87%	43.04%	69.26%	81.75%	85.63%

表 5.5-14 主要潜在震源区对计算点 20(HSZK17)基岩水平峰值加速度的贡献值

	5	10	20	50	100	150	200	300	400
⑨背景源	1.74E-02	8.14E-03	3.04E-03	4.29E-04	4.18E-05	6.38E-06	1.19E-06	0.00E+00	0.00E+00
(8) 咸宁	1.20E-02	3.89E-03	9.32E-04	7.84E-05	4.59E-06	4.17E-07	0.00E+00	0.00E+00	0.00E+00
④背景源	6.10E-03	2.29E-03	5.84E-04	4.37E-05	2.68E-06	2.98E-07	5.96E-08	0.00E+00	0.00E+00
②背景源	1.73E-02	8.10E-03	3.09E-03	5.05E-04	6.74E-05	1.44E-05	3.87E-06	4.17E-07	5.96E-08
(7)新洲	8.39E-03	3.33E-03	8.47E-04	5.65E-05	2.44E-06	1.79E-07	0.00E+00	0.00E+00	0.00E+00
(11) 罗田	8.15E-03	3.97E-03	1.25E-03	1.07E-04	5.72E-06	4.77E-07	5.96E-08	0.00E+00	0.00E+00
(13) 潜山	4.94E-03	1.79E-03	4.39E-04	2.60E-05	8.34E-07	0.00E+00	0.00E+00	0.00E+00	0.00E+00
(12) 武穴	1.00E-02	8.38E-03	5.14E-03	1.36E-03	2.80E-04	8.40E-05	3.04E-05	5.48E-06	1.19E-06

洪大雪沥口	5	50年超越概率	<u>3</u>		100 年志	超越概率	
宿任辰师区	63%	10%	2%	63%	10%	2%	1%
⑨背景源	18.70%	15.62%	10.28%	18.60%	13.32%	7.87%	5.77%
(8) 咸宁	6.19%	2.69%	1.12%	4.86%	1.90%	0.65%	0.36%
④背景源	3.90%	1.48%	0.66%	2.96%	1.04%	0.43%	0.30%
②背景源	18.89%	18.98%	16.59%	19.34%	18.14%	14.97%	13.36%
(7)新洲	5.67%	1.86%	0.61%	4.23%	1.17%	0.28%	0.12%
(11) 罗田	8.09%	3.60%	1.40%	6.76%	2.46%	0.81%	0.43%
(13) 潜山	2.97%	0.84%	0.21%	2.15%	0.48%	0.06%	0.00%
(12) 武穴	29.11%	54.17%	69.03%	37.63%	61.17%	74.92%	79.66%

表 5.5-15 主要潜在震源对计算点 20(HSZK17)多种概率贡献百分比表

表 5.5-16 主要潜在震源区对计算点 24(HSZK22)基岩水平峰值加速度的贡献值

	5	10	20	50	100	150	200	300	400
⑨背景源	1.85E-02	8.83E-03	3.38E-03	4.92E-04	4.86E-05	7.51E-06	1.37E-06	0.00E+00	0.00E+00
(8) 咸宁	1.37E-02	4.78E-03	1.19E-03	1.11E-04	7.93E-06	8.94E-07	1.19E-07	0.00E+00	0.00E+00
④背景源	5.42E-03	1.89E-03	4.31E-04	2.63E-05	1.31E-06	1.19E-07	0.00E+00	0.00E+00	0.00E+00
②背景源	1.66E-02	7.55E-03	2.72E-03	3.94E-04	4.69E-05	9.30E-06	2.32E-06	1.79E-07	0.00E+00
(7)新洲	8.59E-03	3.49E-03	9.15E-04	6.57E-05	3.22E-06	2.38E-07	0.00E+00	0.00E+00	0.00E+00
(11) 罗田	7.91E-03	3.81E-03	1.20E-03	1.05E-04	5.90E-06	5.36E-07	5.96E-08	0.00E+00	0.00E+00
(13) 潜山	4.44E-03	1.55E-03	3.59E-04	1.84E-05	4.17E-07	0.00E+00	0.00E+00	0.00E+00	0.00E+00
(12) 武穴	9.84E-03	7.84E-03	4.45E-03	1.05E-03	1.96E-04	5.44E-05	1.85E-05	2.92E-06	5.36E-07

表 5.5-17 主要潜在震源对计算点 24(HSZK22)多种概率贡献百分比表

洪大雪沥口	5	0 年超越概率	<u>3</u>		100 年走	巴越概率	
简任辰际区	63%	10%	2%	63%	10%	2%	1%
⑨背景源	21.37%	21.36%	16.58%	22.35%	19.52%	13.94%	11.13%
(8) 咸宁	8.21%	4.77%	2.83%	6.88%	3.88%	2.07%	1.41%
④背景源	3.10%	1.10%	0.48%	2.29%	0.77%	0.31%	0.19%
②背景源	17.42%	17.19%	15.51%	17.65%	16.58%	14.40%	13.17%
(7)新洲	6.38%	2.77%	1.21%	5.10%	1.96%	0.77%	0.45%
(11) 罗田	8.07%	4.43%	2.17%	7.09%	3.31%	1.45%	0.90%
(13) 潜山	2.59%	0.76%	0.19%	1.88%	0.45%	0.09%	0.00%
(12) 武穴	26.13%	46.72%	60.91%	33.04%	53.11%	66.94%	72.76%

6 地震工程地质条件

工程场地地震工程地质条件是指对场地地震效应产生影响的场地地质条件,包括场地的工程地质、地形地貌、地质构造条件及场地土体物理与力学特性等。根据国家标准《工程场地地震安全性评价》(GB17741-2005)的要求,我们对黄石经济技术开发区·铁山区工程场地进行了地震工程地质条件勘测。

6.1 场地勘测

为了从整体上查清场地地质条件及不同地质体对地震效应的影响,根据国家标准《工程场地地震安全性评价》(GB17741-2005)的要求,黄石经 开区·铁山区区域性地震安全性评价项目工程勘探工作共布置 25 个勘探孔, 其钻孔平面布置图如下图(图 6.1-1、2)所示。

6.2 场地工程地质条件

6.2.1 地形地貌

目标区整体上分为两个片区,即经济开发区黄金山工业园区和铁山区 西部工业新城。

经济开发区黄金山工业园区位于黄金山南侧,处于黄金山向大冶湖过 渡的缓坡地形。其中章山地块(①)主要为第四系堆积平地,在油铺垄和 铁铺脑一带为垄岗地貌,目前场地已场坪;汪仁地块(②)和四棵地块(③) 主要为黄金山向大冶湖过渡的缓坡,坡度约8.7‰,靠近黄金山一侧分布有 剥蚀垄岗地貌,目标区所在的大广高速连接线道路以南区域目前均已场坪 (图6.2-1),整体上目标区地势平坦。

图 6.2-1 汪仁地块地形地貌

铁山西部工业新城处在东方山南侧,该目标区现已完成拆迁和场坪,地势较为平坦(图 6.2-2)。

图 6.2-2 铁山地块地形地貌(红色线框内为目标区)

6.2.2 地层岩性

根据场地勘测和钻孔岩芯结果显示,场地内岩土地层分布根据其年代、 成因、土层结构特征及强度上的差异,场地土自上而下分述如下:

1) 第四系人工堆积层(Q4')

杂填土(①-1):杂色,松散,成分复杂,以粘性土为主,局部夹砂土、 碎石,均匀性较差。层厚为 0.4~5.2m。

素填土(①-2):杂色,稍密~中密,成分以粉土为主,切面粗糙,稍湿, 干强度低,局部含植物根茎,场区内本层主要揭露于 ZK16 号钻孔中。

粉质黏土(①-3):砖红色、肉红色,呈硬塑状,切面略粗糙,手捻有颗粒感,干强度、韧性中等。含少量砾石,呈次棱角状,粒径 0.3~1cm,场 区内本层主要揭露于 ZK12 号钻孔中。

2) 第四系全新统残坡积层 (Q_4^{del})

粉质黏土(②): 褐黄色夹灰白色、灰色,呈可塑~硬塑状,局部夹有砾石,岩芯切面稍滑,干强度中等,韧性中等,不易掰开。场区内本层局部缺失,层厚为2.4~4.3m。

3) 第四系全新统冲洪积层 (Q_4^{pal})

粉质黏土(③-1): 灰黑色,呈软塑~可塑状,具臭味,取芯切面稍滑, 干强度低,含植物根茎,场区内本层局部缺失,层厚为1.3~2.1m。

粉质黏土(③-2): 灰褐色、砖红色,呈硬塑状,以粘性土为主,局部 含少量卵砾石,呈次棱角状,粒径 0.3~5cm。取芯切面光滑,手捻有颗粒感, 干强度、韧性中等。场区内本层局部缺失,层厚约为 2-5.9m。

含砾中砂(③-3): 棕黄色,结构松散,取芯呈散砂状,砂粒粒径为0.5~2mm,呈次圆状~次棱角状,成分多为石英、岩屑、长石组成,含少量卵砾石,粒径为0.5~5cm,呈次圆状。场区内本层局部缺失,层厚为1.1~5.1m。

4) 第四系上更新统残坡积层(Q₂₋₃^{del})

粉质黏土(④):砖红色、灰黄色,呈可塑状,以粘性土为主,局部夹砾石。岩芯切面稍滑,湿度湿,干强度中等,取芯呈长柱状。场区内本层局部缺失,层厚为0.6~5.3m。

5) 白垩~古近系东湖群(K-Edn¹) 砂岩

全风化砂岩(⑤-1):紫红色、砖红色,原岩结构已完全风化破坏,岩芯刀切易碎。场区内本层局部缺失,层厚为0.4~11.2m。

强风化砂岩(③-2):紫红色、砖红色,主要成分为石英、长石,局部 含砾石、泥质含量较高。原岩受风化作用影响,表面结构已遭破坏,断面 可辨岩石结构为含砾中~粗砂结构,岩质较软。场区内本层局部缺失,层厚 为 2.3~15m。

中风化砂岩(⑤-3):紫红色、砖红色,主要成分为石英、长石,局部 含砾石、泥质含量较高。取芯断面原岩结构清晰可辨,岩质半坚硬,锤击 声哑,无回弹。场区内本层局部缺失,层厚未揭穿。 6) 侏罗系中统 (J₂)

玄武岩(⑥): 灰黑色,发育气孔杏仁构造,斑状结构,主要组成矿物 为基性斜长石、角闪石、辉石及玻璃质等,杏仁石主要成分为方解石,岩 质较为坚硬,锤击声脆。场区内本层主要揭露于 ZK11 号中,层厚为 1.3m。

7) 三叠系中统嘉临江组(T₂*j*) 灰岩

强风化灰岩(⑦-1):灰白色,隐晶质结构,层状构造,主要成分以方 解石为主,局部白云质含量较高,取芯呈短柱状,少量长柱状,岩质坚硬, 锤击声脆,有明显的回弹。本层主要分布在铁山区内,经开区本层主要揭 露于 ZK19 号孔中,层厚约 4m。

中风化灰岩(⑦-2): 青灰色, 隐晶质结构, 层状构造, 主要成分以方 解石为主, 局部白云质含量较高, 岩芯较坚硬, 锤击声脆, 有回弹; 部分 岩芯表面可以看到岩溶孔洞发育成蜂窝状。本层主要分布在铁山区内, 经 开区本层主要揭露于 ZK19 号孔中, 层厚未揭穿。

8) 志留系下统高家边组(S₁gj¹) 砂质灰岩

强风化砂质灰岩(⑧-1): 浅灰色、深灰色,隐晶质结构,层状构造, 主要成分以方解、石英砂粒,取芯呈碎块状、饼状,岩芯锤击易碎,岩质 较软。场区内本层局部缺失,层厚为 5.2~8.9m。

中风化砂质灰岩 (⑧-2): 青灰色, 隐晶质结构, 层状构造, 主要成分 以方解石、英砂粒, 取芯呈长柱状, 底部裂隙发育, 取芯呈碎块状, 岩质 较坚硬, 锤击声脆, 有回弹。场区内本层局部缺失, 层厚未揭穿。

9) 奥陶系

(1) 奥陶系上统临湘组 O₃l

中风化泥质灰岩 (⑨-1): 青灰色,细晶结构,层状构造,主要成分以 方解石、粘土矿物为主。取芯呈长柱状,局部发育少量裂隙,长柱状最长 可达 80cm,采取率较高,岩质坚硬,锤击声脆,有明显回弹。场区内本层 主要分布在经开区东部,层厚未揭穿。

(2) 奥陶系下统大湾组 O₁d

强风化泥质灰岩(⑨-2): 青灰色,细晶结构,层状构造,主要成分以 方解石、粘土矿物为主。岩质极软,取芯呈碎块状,采芯率低,岩芯可用 刀刻画,锤击易碎声哑,不回弹,孔深 8~17.7m,取芯呈散砂状,不成形, 钻进过程中造浆严重,手捏岩芯呈粉砂状,已完全失去胶结,层厚约 11.7m。

中风化灰岩(⑨-3): 灰色、灰白色,隐晶质结构,层状构造,主要成 分以方解石为主,局部泥质含量较高。取芯呈长柱状,少量短柱状,岩芯 中发育较多的溶孔、溶洞,局部可见晶形较好的方解石脉与岩溶角砾,岩 芯岩质坚硬,锤击声脆,有回弹。

10) 寒武系中上统(*€* 2-3)

强风化白云岩(⑩-1): 灰白色,隐晶质结构,层状构造,主要成分由 白云石组成。取芯多呈碎块状,少量短柱状,岩芯较为破碎,岩质较坚硬, 锤击声脆,层厚 3.5m。

中风化白云岩(⑩-2)、白云质灰岩:灰白色,取芯多呈短柱状,底部 白云质灰岩呈碎块状,岩芯较完整,岩质坚硬,锤击声脆有回弹。

11)花岗闪长岩(γδ)

强风化花岗闪长岩呈灰白色,花岗结构,块状构造,主要成分为角闪 石、钾长石、石英等。取芯呈碎块状,岩芯较破碎,岩质较软,锤击易碎, 斜长石风化强烈。场区内本层主要揭露于 ZK22 号孔中,层厚约 4.1m。

12) 中风化花岗闪长岩

灰白色,花岗结构,块状构造,主要成分为角闪石、钾长石、石英等 造岩矿物。岩芯较完整,以柱状为主,少量碎块状,岩质新鲜,岩质坚硬, 锤击声脆。场区内本层主要揭露于 ZK22 号孔中, 层厚未揭穿。

13) 辉绿岩(βµ)

中风化辉绿岩:灰绿色,块状构造,辉绿结构,主要由辉石、基性斜长石等矿物组成,基性斜长石遭受钠黝帘石化,蚀变矿物常带绿色色调, 岩石中发育裂隙,充填方解石脉,岩芯取芯呈长柱状,锤击声脆。场区内 本层主要揭露于 ZK11 号孔中,层厚约 4m。

6.3 剪切波速测试

根据地震安全性评价要求,在勘探的基础上,对场地25个勘探孔做了 土层剪切波速测试,获取了岩土层的剪切波速,完成工作量统计表如下表 6.3-1,得到了25个钻孔对应的剪切波测试成果图(图 6.3-2~图 6.3-26)。需 要说明的是若岩土层厚度小于1m,则岩土层平均剪切波速直方图中该层不 做统计。

表 6.3-1	更	的波测试完成工作量统计和	表
序号	孔号	钻孔深度(m)	剪切波测试深度(m)
1	HSZK1	17.5	16.0
2	HSZK2	21.5	20.0
3	HSZK3	24.5	23.0
4	HSZK4	15.0	14.0
5	HSZK5	18.3	17.0
6	HSZK6	17.2	16.0
7	HSZK7	7.9	7.0
8	HSZK8	32.5	31.0
9	HSZK9	34.5	33.0
10	HSZK10	32.0	31.0
11	HSZK11	15.0	14.0
12	HSZK12	20.8	19.0
13	HSZK13	34.3	33.0
14	HSZK14	26.9	25.0
15	HSZK15	31.5	30.0
16	HSZK16	20.2	19.0
17	HSZK17	15.2	14.0
18	HSZK18	16.5	15.0
19	HSZK19	16.5	15.0
20	HSZK20	22.0	21.0
21	HSZK21	24.0	23.0
22	HSZK22	19.0	18.0
23	HSZK23	38.0	37.0
24	HSZK24	35.0	34.0
25	HSZK25	42.2	41.0

黄石经开区•铁山区地震安评岩土工程勘察HSZK01钻孔柱状图

钻孔	位置	黄	石经开	区・铁	山区 N:	:30°9	30.52	E:115° 8′ 16.60″	孔口地面 高程	34	*	平均岩芯 采取車	强	%	弱	%	徽新	%		
钻孔	目的		査明	场址区名	岩土层组	吉构特征	E及工程地	质特性	钻孔深度	17.5	*	风化层厚度	全 0 法	米强	3. 5	*	B 8.	8米 全强	虽风化厚	3.5米
钻	孔旗			90	1	站机类	型	Y-150	覆盖层厚度	5.5	*	地下水位	<u>最定水位</u> 双侧日期	30.78 201911	米 20	· 并 與	孔日期		20191119 20191119	
地层	孔	高	厚	柱状	图	壯	风化		bl. 15	: L# 15			标贯及	测点	测点	男 切	1	岩土层平均	均剪切波速	Į
代長	深 (米)	程 (米)	度(米)	及 钻孔结	构	层编号	分带		地质	1 油 坯			魚探 (击)	深度	走时	波速	100	直方图	(米/秒)	600
3		40000		×1	XX			——————————————————————————————————————	退益色 船下	今 十 西 中 松	后秋十4	加机石组成		(米) 1	(毫秒) 7.2	米/秒 138.3	100	200 300	400 500	000
QI	2 00	91 00	2 00	\mathbf{X}	X	1	覆	取芯呈流塑	教塑状,富含	植物根系,含:	少量生活	场边级。	2 70-2 00	2	7.1	140.5		140.3		
opal	3.00	31.00	3.00	1		_	盖	含砾粉质	(黏土: 灰褐 色	1、土黄色, 取	、芯呈短	柱状,手捻有	3. 70 ¹⁵ / _~ 4. 00	4	3.6	280.0	1		910 1	
A3	5.50	28.50	2.50	14		4	724	颗粒感,干强度	使中等;卵砾石	含量约20%,	主要成	分为灰岩、泥		5 6	3.2 2.1	310.9 466.9		ļ	316. 1	
				日		3	强风	人质粉砂岩等 , 米	拉径一般为1~5	icm, 呈次圆状	0			7	2.1	472.9			46	1.2
	9.00	25.00	3. 50				化	白云岩。	· 友白色 取芯	名呈磁体状	小量領援	计状 岩紫纹	1	8 9	2.2	490. 4			Ľ	
								∖ 为破碎, 岩质	较坚硬,锤击	声脆。 声脆。	✓ .至./並1	1.10, 11.0.17		10 11	1.6 1.6	607.0 612.5				
€2-3				H			中	<u> </u>					1	12	1.6	620.2				
						4	凤	白云岩、	白云质灰岩:	灰白色, 取ざ	多呈短	柱状,底部		13 14	1,6 1,6	625, 5 629, 6				623. 1
				Ħ			化	白云质灰岩呈	碎块状,岩芯	\$较完整, 岩质	坚硬,智	話声脆有		15	1.6	632.4				
	17 50	16 50	8 50				15	凹弾。						10	1.0	000.1				I.
	11.00	10.00	0.00										1							
	Ц																			
钻			1 -	*1 *-	苦ていき	¢₩-₽	工化区 -	供山区村了 4	2113/2017	覆兰日回=	5-									
孔			2	下伏基	胃口空边 岩为中-	上寒	开友区 民统灰白	秋山区和北, 梁 色白云岩、白云	质灰岩,钻孔排	,復	om。 3. 5m, 中	风化层未揭到								
小			3. 4	站孔光	内做2段 芯经地局	标准的	贯入试验 描述照像	。 后,未作保留。												
结							an series provide a series of the series of	-,, -,-, -, -, -, -, -, -, -, -, -, -,												
<u> </u>		钻	机:::	土木公司	1			鉴定:周洋、	图:宁文涛			į	校核:	房艳国	1					

黄石经开区•铁山区地震安评岩土工程勘察HSZK02钻孔柱状图

钻孔	1位置	黄石	经开	区・铁山	山区 N:	30° 9′	22. 63″ E	:115°7′17.81″	孔口地面 高程	39	*	平均岩志 采取率	强	%	鍜	%	微新	%	
钻孔	1月的		査	明场址图	区各岩土	县结构	特征及工程	地质特性	钻孔深度	21.5	*	风化层厚度	全 0	米强	0	*	弱 15.5	米 全强风化厚	0米
钻	乱 新度			0 90	笥	机类型	<u>I</u>	Y-150	覆盖层厚度	6	*	地下水位	<u>粮定水位</u> 观测日期	36. 31 20191	来 121	开终	孔日期	20191120 20191120	
地	孔	高	厚	柱制	图	岩土	國化						标贯	测占	测占	剪切	岩	土层平均剪切波速	(
层代	澯	程	度	3	Ł	层	л #		地质	质 描 过	Ì		及触探	深	走	波		直方图 (米/秒)	
号	(米)	(米)	(米)	钻孔	结构	编号	分节						(击)	度(米)	时 (毫秒	速 米/秒	100	200 300 400 500	600
Q ^r ₄	1. 20	37.80	1.20		1	1		九博士	·甘山0~1 2m	为太泥色1	》十本十7	ና ሙትትዋ	1.50-1.00	1	6.9	145, 3		145.3	
							稷	和砂,结构	松散不成形:	中石粒谷1~	5cm. 呈榜	角状.成分多	11 11	2	4.2	240.1			
$Q_4^{\rm pal}$				/%		2	盖	\ 为灰岩					3.60~3.90	4	3.4	290.4		283.0	
				1/	11		层	\					- 23	5	3.2	310.9			
	6.00	33.00	4.80					含砾粉质	點土:棕黄色,	,取芯呈柱	状,切面和	悄滑,手抢有		6	3.2	315.2 512.5			1
								颗粒感,干强度	建中等 ,湿度稍	湿,呈可塑;	伏;孔深4.	9 ^{~6m} , 夹块石	,	8	1.9	514.1			
				╞┱╍╣				↓ 块石含重约3	0%, 粒 伦 3 b c m	,成分为水	宕、细砂	宕, 呈次圆 次		9	1.9	518.3			
							中	夜用状。					4	11	1.9	526.7			
														12	1.9	528.4			
€2-3						3	54							13	1.9	531.3 532.2			530. 7
							14	白云岩,	友白色 取芯	夏长柱状 調	高部发育/	暑裂階		15	1.9	535.1			
								长柱状最长词	可达80cm, 采取	率较高,岩	质坚硬,智	重衣际,有		16	1.9	537.0			
							化	明显回弹。						17	1.8	540.9 542.8			
				╞┱┲╖										19	1.8	543.7			
				╞┲╬╝										20	1.8	547.6			
	21.50	17.50	15. 50										-						
\vdash	\square																		
钻		1, 1	本孔	为黄石	经济技术	≮开发	区・铁山	1区钻孔,终孔孔	深21.5m,覆盖	层厚6m。									
孔		2	下伏	基岩为	上奥陶组	充临湘	组泥质力	记 书,钻孔内中等	穿风化层未揭到	₹.									
小		4	出孔	岩芯经	地质鉴知	同八1	照像后,	未作保留。											
结																			
		<i>k</i> L	ŧn.	L+^=	1			收合. 四米	白子妹 萨人办		Sale and shall	团、台办地				**	中华国		
		Ħ	01::	工木公司	ļ			金疋: 周轩、	丁义碑、陈金疋		1成化同	31:丁义界				仪仪	厉把固		

黄石经开区•铁山区地震安评岩土工程勘察HSZK03钻孔柱状图

钻孔	位置	黄石	经开	【・铁山】	X N:	30° 9′	45. 53"	3:115° 7′ 26.85″	孔口 激面 高程	42	*	平均岩む 采取率	强	%	跼	%	微新	%		
钻孔	旧的		査明	动址区 各	岩土层组	构特征	E及工程地	质特性	钻孔深度	24.5	*	风化层厚度	全 0	米强	8.9	*	弱 8.	6 米 全强风	化厚	8.9米
钻	孔 <u>新度</u>			0 90	铅	机类型		Y-150	地下水位	<u>稳定水位</u> 观察日期	37.94 201911	¥ 17	开典	孔日期	20 20	91116 91116				
地层	孔	高	厚	柱状	图	岩土	风化		- 王 王	准 沾			标贯及	测点	测点	剪切	ż	皆土层平均剪	切波速	
代号	深 (米)	程 (米)	度 (米)	及钻孔组	吉构	伝 编号	分带		现 灰	抽坯			触探 (击)	深度(学)	走时	波速	100	直方图(米 200 300 44	/秒)) <u>0 500</u>	600
Q4	1.80	40.20	1.80	X		1		杂填土:	填土成分以	砂土为主,颜	色呈灰黄	黄、黄褐色,		1 2	7.1	136.2		143. 0		
Q ^{ed1}		07.00			0/1	2	復善	结构松散, 手 页岩、灰岩	·捏易碎;碎石 等,分选磨圆差	含重约为30% 差,呈次棱角料	,粒径1 犬。	3cm, 成分为	2.70~3.00 15	3	4.1	243.5		240. 4		
Opal	4.20	37.80	2.40		0.0	2	层	含砾粉	贡黏土:棕黄色	9, 取芯呈柱料	犬,切面和	削滑,干强度	4.50~4.65 50	5	3.0	330.9			54.3	
¥4	7.00	35.00	2.80			3		中等,湿度;	显;砾石含量约	510%, 粒径0.	8~1cm, Д	成分为灰岩,		7	2.7	372.9				
				臣	臣		强	含砾中	。 沙:棕黄色,结	构松散,取芯	呈散砂状	代,砂粒粒径	1	9	2.3	435.3				
			ļ	畐	臣	4	53	为0.5~1mm,	呈次圆状 [~] 次根	使角状,成分多	的 一 日	,岩屑;含少 次圆状		11	2.2	445.5			447.	.3
				噩	臣	1	7.	》 》 》 泥质友	出在八1 40m, A	深东色 其中	10°石,主	公四八。 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	-	13	2.2	450.5				
	15 00	26 10	8 00	畐	臣		К	破坏下呈散	砂状,采取率根	K低, 岩芯锤i	占易碎,岩	岩质极软:孔		15	2.2	458.4				
Чd	10. 50	20.10	0. 50					深13.5 15.9 软,采取率转	加取心呈碎块 č低。	状、饼状, 宕	心锂击》	动僻, 石 质 牧		17	1.8	554.7				7
				噩	臣		中	·					1	19	1.8	562.4				562, 9
				語	臣	5	风	泥质灰岩	岩:青灰色,取	芯呈长柱状,	底部裂隙	食发育,取芯		20	1.8	568.5				
				弄	臣		化	呈碎块状, 岩	质较坚硬,锤	击声脆,有回	弹。			23	1.8	572.2				l,
-	24.50	17.50	8.60	프크						-										
										1										
														Ļ						
						ļ														
		ļ																		
	T		1			L							1	1		L				
1 日 孔			1.2.	本孔为下伏基	黄石约	济技志留	术开发区 统高家边	•铁山区钻孔, 组下段砂质灰岩	终孔孔深24. ,钻孔揭穿引	5m, 覆盖层厚 虽风化层8.9m	7m。 ,中风化	层未揭穿。								
小			3, 4,	钻孔孔 钻孔岩	内做2	段标准	惯入试 定描述照	金,取得岩土样 像后,未作保留	一件											
桀								is and in the BA												
		钆	机:	土木公司				鉴定:周洋、	宁文涛、陈金龙		微机制	图:宁文涛				校核	房艳国	1		

图 6.3-4 钻孔 HSZK3 剪切波测试成果图

黄石经开区•铁山区地震安评岩土工程勘察HSZK04钻孔柱状图

钻孔	位置	黄石	「经开	区・铁山	山区 N:	30° 8′	49. 43"	E:115° 6′ 26.16″	孔口地面 高程	24	ж	平均岩芯 采取車	强	%	弱	%	徽新	%		
钻孔	目的	j	查明场	址区各省	台土层结	构特征	及工程地质	质特性	钻孔深度	15	*	风化层厚度	全 0	米强	0	*	弱 9.	3 米 全	强风化厚	0米
钻	船崩		_	0 90	铕	胡类型	Ð I	¥-150	覆盖层厚度	5.7	*	地下水位	<u>発定水位</u> 高期日期	21.59 201911	*	并终	孔日期		20191113 20191113	
地民	孔	高	厚	柱;	状图	岩土	风化			- 111			标贯	測点	測点	剪切	1	出层平均	均剪切波速	
伝代	深(*)	程	度(米)	杜耳	及供約	层	分带		地员	5 描 述			魚探	深度	走时	波道		直方图	(米/秒)	
号	0.40	23.60	0 40	14131 		- 1-1					alarment with		(щ)	(米)	(毫秒)	米/秒	100	200 300	400 500	600
Q ^T	0. 10	20,00	0, 10			1-2	覆	杂填土 秘密44 40	:主要成分为黄 面粗糙 毛铃素	電褐色粉土夹	碎石,取	芯呈碎块状,		2	6.6	146. 1 151. 4		151.8		
\vdash	2, 80	21.20	2.40	10			盖	15mm,成分复	回祖仰,于16年 〔杂,呈棱角状	9 末 央个生纪》,14十个- 。	百里口	<i>№, 1</i> ⊻1±≠14		3	6.3	158.4				
Q del 2-3				///	19/1	2	层		,土西出公书4	古苦 苦退免	以后秋-	上的龙马社	-	5	3.9	252.2		:	246.8	
⊢	5.70	18.30	2.90	124		-		秋,中密状	, 切面稍滑, 湿	度湿、干强度	中等,局	L,		6	2.1	466.9				٦
				ŦŦ	F	1	de .	物根茎。	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					8	1.6	575.4				
				H			<u> </u>	含砾粉	质黏土:棕褐色	6. 取芯不成形	5. 呈散研	妙状.砂的主	1	9	1.6	578.3				
01d						3	凤	要成分为石	英和岩屑, 粒径	圣多集中在1~	2mm;砾7	「含量约20%,		10	1.6	579.9 582.4				576.6
						1		粒径0.2~1c	m,成分多为灰	岩,呈次棱角	次圆状			12	1.6	585, 7				
						1	化	灰岩:办	天色、灰白色,	取芯呈长柱状	、,少量短	豆柱状, 岩芯	1	13	1.6	587.1 592.2				
	15.00	9.00	9.30			1		中发育较多	的溶孔、溶洞	,局部可见晶	形较好	的方解石脉								1
								与岩溶角砾	, 岩芯岩质坚确	更,锤击声脆有	回弹。									
			ł			Ì I														
													1	1						
				ļ –				l												
							1													
						ł														
1																				
														Ļ						
													1							
				1			ļ	1												
	1																			
						1														
		l																		
													ļ.	ł						
家族																				
TH TH		1	、本	孔为黄	石经济	技术开	F发区・针	失山区钻孔,终孔	.孔深15m, 覆盖	层厚5.7m。										
1		2	、下	伏基岩	为下奥 经地质	陶统大 鉴定お	で湾组灰湯	告,钻孔中风化) 后, 未作保留。	层未揭穿。											
4		5	, и <u>н</u>																	
																			_	
		铅	机:	土木公司				鉴定:周洋、	宁文涛、陈金龙	È	微机制	图:宁文涛				校核	: 房艳国			

161

黄石经开区•铁山区地震安评岩土工程勘察HSZK05钻孔柱状图

钻孔	位置	黄石	经开	図・铁山	🗵 N:3	0° 9′	9.96″E:	115° 6′ 16.61″	孔口地面 高程	29	米	平均岩芯 采取率	强	%	跼	%	徽新	%		
钻孔	目的	3	生明场	址区各社	出层结	构特征	及工程地质	特性	钻孔深度	18.3	*	风化层厚度	全 0	米强	11.7	*	弱 0.	6 米 全	强风化	厚 11.7米
钻	孔 <i>鍋度</i> 方向			0 90	備	机类型	ž	Y-150	覆盖层厚度	6	*	地下水位	<u>粮定水位</u> 双洞日期	24, 86 201911	米 16	开资	孔日期		2019111 2019111	5
地	孔	高	厚	柱状	代图	岩土	风化						标贯	測点	测点	剪切	1	岩土层平	均剪切	波速
层代	深	程	度	В	ž	层	公共		地质	描述	Ì		放探	深	走	波		直方图	(米/秒)
号	(米)	(米)	(米)	钻孔	结构	编号	un ur						(击)	度(米)	时 (毫秒)	速 米/秒	100	200 30	0 400	500 600
							-	杂填土:	砾石与土混	杂,土质松	散,取芯不	成形。成分		1	7.2	138. 5				
Q	0.00	05.00	0.00			1	覆	主要为棕黄	色粉质黏土,呈	可塑状,切	面粗糙, 含	含少量砾石,		2	7.1 6.9	140.3 142.6		144.5		
\vdash	3.20	25.80	3, 20	××			盖	^{粒径为1~3cr}	1,成分主要为	灰岩,呈次	愛角状。			4	3.1	254.1	'			
Q ₄ ^{pal}	c 00	00.00	0.00		- 0 - 0	2	层	含砾中面	少: 棕黄色, 结	构松散,取	芯呈散砂	伏,砂粒呈次	1	5	3.0	328.9			305.6	
\vdash	6.00	23.00	2.80	<u> </u>				圆状~次棱角	状,分选好,	成分多为石	英, 岩屑,	含少量卵砾		7	2.4	425. 5		I		
								\石,成分为灰	云岩,呈次棱角	`次圆状。				8	2.3	428.1				
							强	粉砂质泥	2岩, 岩质极刻	1 取芯呈码	快状 采	古塞任 岩芯可]	9	2.3	430. 3 434. 2				
								用刀刻画,智	垂击易碎声哑,	不回弹,孔	深8~17.7	n,取芯呈散		11	2.3	439. 7				409.0
Sįgj					ا	3	风	砂状,不成形	,钻进过程中;	告浆严重, /	属极软岩,	手捏岩芯呈		12	2.3	440.4				438. 9
					ö			粉砂状,已完	全失去胶结。					14	2,3	443.7				
1							化	/		-	15	2.2	445. 4							
								/ 灰岩:青	取芯呈柱状,		16 17	2.2	448.2 452.5							
	17.70	11.30	11.70					/ 岩质坚硬。												
01d	18.30	10.70	0.60	╘╌┶		4	中风化			-										
l																				
													1							
	ļ																			
{			ł			1														
		l																		
				Į į									1	1						
	ļ.																			
1			1																	
		l l																		
													ļ.							
⊢	Ļ			L_																
钻			+7	上步	网络生	- T -4-	4.V. H	1.1747 407	乙次10 0_ 西	羊口 回 6										
A		2	本 打 下行	しろ東仁	コ空けが	小 力 统大	反亾• 铁 湾组泥质	山区市九, 公九5 灰岩, 钻孔揭穿3	压休18.3m,復 强风化层11.7	m云序0m。 n,中风化/	层未揭穿。									
小		3,	钻孔	出岩芯纲	至地质鉴	定描	述照像后	,未作保留。												
结																				
L		20	1					ar.a. 0.000			141 ha c				-	12.13		,		
		铅	机:	土木公司	ĩ			鉴定:周洋、	宁文涛、陈金龙	5	徽机制	图:宁文涛				权核	: 房艳国	4		

图 6.3-6 钻孔 HSZK5 剪切波测试成果图

黄石经开区•铁山区地震安评岩土工程勘察HSZK06钻孔柱状图

钻孔	位置	黄石	经开	又・铁山	N: N	30° 9′	24.23 E	: 115° 5′ 41.67″	孔口地面 高程	40	*	平地岩芯 采取率	强	%	跼	%	徹新	%		
钻孔	目的	査	明场圳	区各岩:	土层结构	特征及	工程地质物	特性	钻孔深度	17.2	*	风化层厚度	全 0	米强	5.2	*	弱 7.	1米全國	國化厚	5.2米
钻	乱病			0 90	R	钻机类	型	Y-150	覆盖层厚度	4.9	米	地下水位	<u>整定水位</u> 观美日期	39.03 201911	米 16	开鉄	孔日期		20191115 20191115	
地	孔	高	厚	柱为	图	岩土	风化						标贯	测点	测点	剪切	ļ	出层平均	剪切波速	
层代	深	程	度	В	٤	层	ム 歩		地	质 描 述			及触探	深	走	波		直方图((米/秒)	
号	(米)	(米)	(米)	钻孔	结构	编号	di U						(击)	度 (米)	町 (毫秒)	迷 米/秒	100	200 300	400 500	600
				\mathbf{X}	X		题	杂填土:	回填土含量组	的75%,成分为	粉土, 颜	随为土黄色,		1	7.3	137.5				
Q4						1	盖	结构松散,潜	度稍湿,呈稍	密状;碎石大/	小混杂,	多呈棱角状,		3	7.0	141.5		141.9		
opal	3.60	36.40	3.60	1	50	,	层	原岩成分为	页岩和灰岩。 					4	7.6	151, 4	L	233	9	
₩4	4.90	35.10	1, 30	Idel.	ale L	1°		粉质黏土	: 深褐色、棕	黄色,取芯多;	为长柱物	伏,软塑~可塑		5	4.8	233.3 416.9		200		
					[强	\ 状, 岩芯切面	前稍滑, 干强度	中等,韧性中	等			7	2.4	422.9				
						3	风	粉砂质洲	记岩:灰色、友	天白色, 取芯多	为碎块	状,少量碎块]	8	2.3	426.4			411.1	
6.4	10.10	29.90	5.20				112	状,岩芯裂隙	发育,岩质脆	弱,锤击易碎。				10	2.3	437.0				
2 ^I R1]	11	2.0	512.5				
					e		中							13	1.9	527.5				505.0
						4	风	粉砂质测	尼岩:灰色,取	芯多呈长柱状	、少量第	钮柱状,岩芯 新	ĩ	14	1.9	532.6				527.8
							化	, 新, 石灰牧 坐	使,锂古尸肥,	殺願少光。				15	1.9	534.4 535.7				
	17.20	22.80	7.10					ĺ												L I
]										
			1			1														
1																				
														1						
								ļ												
	1																			
L			ļ																	
		l																		
														1						
]				ļ												
	1																			
1																				
ł						1														
\vdash	┢	I	1	L			I	I					1		<u> </u>	<u> </u>	L			
솫		1,	本孔	し为黄イ	G经济 打	支术开	发区・領	山区钻孔,终孔	孔深17.2m,覆	盖层厚4.9m。										
孭		2.	下行	【基岩)	内下志留 鼻岩十日	留统高 主一 供	家边组下	下段泥质灰岩,钻	孔揭穿强风化	层5.2m,中区	化层未	揭穿。								
小		4	钻孔	1 岩芯纲	圣地质	鉴定描	。 述照像后	,未作保留。												
结																				
L			H1 -	++~=	1		_	收宁, 国兴	中立法 防众+	7	為加到	凤 , 中小海				枋坊	・ 房 抽目	1		
		'n	101.	- ጥ አ ካ	u.		-	金龙, 两件、		<u>~</u>	144.1/6中リ			-		XX				

图 6.3-7 钻孔 HSZK6 剪切波测试成果图

黄石经开区•铁山区地震安评岩土工程勘察HSZK07钻孔柱状图

钻孔	位置	黄	百经开	区・铁	ЦX N	: 30° 9	' 7.95" E	:115° 5′ 18.74″	孔口逝面 高程	36	*	平均岩芯 采取率	强	%	扇	%	微新	%	
钻孔	目的	査	明场	址区各岩	土层结构	向特征	及工程地质	特性	钻孔深度	7.9	*	风化层厚度	全 0	米强	5.3	米	弱 0.9	米 全强风	化厚 5.3米
钻	乱前			0 90	1	钻机类	型	Y-150	覆盖层厚度	1.6	ж	地下水位	<u>稳定水位</u> 麦润日期	34.14 201911	* 13	开售	孔日期	2019 2019	91112 91112
地		高	厚	柱;	状图	岩土							标贯	测占	测占	剪切	불	计同平均前	切波速
层供	深	程	度		及	层	风化		地易	6 描 述			及触探	深	走	波		直方图 (米)	(秒)
号	(米)	(米)	(米)	钻孔	结构	编号	分带						(击)	度(米)	时 (毫秒)	速 米/秒	100	200 300 40	0 500 600
07	1.00	04.40	1 00	\mathbf{x}		1	覆盖层	杂填土	成分为粉质	黏土,棕黄、	黄褐色,	取芯多为短		1	7.1	141.3	τ	141.3	
-	1.60	34.40	1, 60	r fi	Ĩ			柱状,切面和	清,湿度湿,干	-强度中等,引	F抢有颗	粒感。含少	l	2	3.8	260.4		200.1	٦
							强	↓ 量砾石,粒	径为0.5 [~] 2cm,	成分为灰岩,	磨圆度转	交差,呈次棱		3	2.2	456.4			
				莊		2	风	\ 角状。						5	2.2	460. 9			459.4
031	7 00	20.00	5 40	H	Ĩ		化	小馬丸	·	出亡马可心从	田影响	亚舌 刻腔尖	1	6	2.2	462.2			
	7.00	29.00	0.40		<u>⊨</u>	3	中风化	矿灰灰 育 取芯名具	石: 月水巴, イ	后有文风化而	历起州	一里, 农际及		Ľ.		100.0			1
┢─	1. 50	20, 10	0. 50					~6m 6.8~7m	。 岩芯表面可	见溶孔、孔谷	0.6~2cm	in topics o							
									ц 1 0 X Ш Ч,	7010 J 0, J 0 12.	0.0 201	0							
								砂质力	尝:青灰色,即	v 芯呈短柱状	. 岩质较	坚硬,垂直声	l						
				ł				脆,稍有回	端。 弹。		- AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	1.2) 112							
							1												
1										-			1						
ł																			
													l	ļ					
				1			l												
			Ļ			1													
1																			
														ļ					
				1			ļ												
			Į –			1													
1																			
														ļ					
				1			ļ						1						
			ŀ			1													
1		l				1													
						1													
	Ļ					L			_										
供																			
7		1	太子	、为带7	·经济和	开开	发区•铒	山区钻孔终孔	孔深7.9m.覆盖	長厚1.6m。									
1		2	下位	【基岩》	下志會	统高	家边组下	段砂质灰岩,钻	孔揭穿强风化	层5.3m, 中区	化层未	揭穿。							
1		3,	钻孔	し 岩芯約	至地质器	定描	述照像后	,未作保留。											
「	1																		
_		钻	机:	土木公司	đ			鉴定:周洋、	宁文涛、陈金龙	2	微机制	图:宁文涛			ł	校核	: 房艳国		
							图 6	.3-8 钻	i <mark>7</mark> 1. HSZ	ZK7 剪	切波	刻试成	え果る	<u>z</u>					

黄石经开区•铁山区地震安评岩土工程勘察HSZK08钻孔柱状图

钻孔	位置	黄石	经开区	(・铁山	X N:3	0° 8′ :	23.61″E:	115° 5′ 46.03″	孔口地面 高程	30	*	平均岩石 采取率	强	%	弱	%	徽新	%		
钻孔	目的	査明	场址	区各岩土	层结构物	守征及二	L程地质特	性	钻孔深度	32.5	*	风化层厚度	全 1.4	米强	7.8	*	弱 20.5	5米 全强	风化厚	8.9米
钻	L 無度 方向			0 90	l.	钻机类	型	Y-150	覆盖层厚度	3.1	*	地下水位	<u>稳定水位</u> 爱测日期	26.05 201911	* 21	开鉄	孔日期		20191120 20191120	
地	71	高	斑	柱	* 图	岩土	17./1		7				标贯	测	测占	剪加	岩	十巨平石	前切波演	
层	深	程	度	1.1	及	层	PA H C		地员	6 描 述			及曲题	深	走	防波	10	直方图 (3	米/秒)	
代号	(米)	(米)	(米)	钻孔	结构	编号	分帯						(击)	度	时	速	100	200 300	400 500	600
QI	0.90	29.10	0.90			1	题		- 本白色 表目	则破十为主	往下主	西 为碎石十		1	7.0	143.4	<u> </u>			
Oedl				1/1)	17	2	盖	東地石 地石	; 从口口, 农力	SNUT191	тг	女/加叶伯二		2	4.3	231.2		181.2		
₹2-3	3.10	26.90	2.20	11	°///		层					to the second state	-	3	4.1	243.5		L		
	4.50	25.50	1.40			3	全风化	★ 粉质数	土:砖红色、汤	(黄色, 呈り翠	状, 岩花	5切面梢滑,		5	2.9	402.6			364.1	
								湿度湿, 十弦	地度甲等,取心	全长杜祆。			1	6	2.2	446. 9				
						<u>- 0</u>	麗	含砾砂	岩:紫红色、	砖红色,取芯	呈短柱状	代,岩芯表面	1	7	2.2	448.9				
						4	风	和切面可观	察到较多砾石	,含量约为15%	6, 粒径7	大小为2.5~3		9	2.2	453. 3			449	.8
							a.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	取较差,呈次圆	"次棱角状,原	岩结构	已完全风化		10	2.2	456.3				
l	10.00	10.00	7.50				10	做坏, 宕心/	J切易餠。					11	2.2	458.5				
	12.00	18.00	7. 50					含砾砂	岩:紫红色、	砖红色,取芯	呈短柱物	代,部分碎块		13	1.9	530. 5				1
								状,受风化	作用影响,原若	表面结构已	遭破坏,	断面可辨岩		14	1.9	535.6				
						a - 0		\ 石结构为含	砾中~粗砂结构	约,其实长石矿	物风化	,岩质较软。		15	1.9	538.4				
	l					•	1						1	17	1.8	540.7				
K-Edn							 							18	1.8	542.4				
				···a	e 									19	1.8	545.4				
			1											20	1.8	548.5				
								含砾砂岩	- 紫红色、石	专行色,取芯号	长柱状	. 岩芯断面		22	1.8	550.3				549.9
						5	<u>A</u>	原岩结构清晰	· 新亚己、	半坚硬,锤击	声哑,无	回弹		23	1.8	551.3				
						•								25	1.8	556.1				
	ļ					0	ľ –							26	1.8	558.3				
					· a · · ·	•	ø							27	1.8	559.6				
							10							29	1.8	563.2				
			1											30	1.8	564.1				
														31	1.8	566.5				I
	32. 50	-2.50	20.5	0 		•							4							
				ļ										Ļ						
							1													
	1																			
						ļ														
			1																	
1		l																		
				Į				l												
1																				
1						Į														
1			{																	
Ľ																				
部		1,	本孔	为黄石	经济技	术开发	区・铁山	山区钻孔,终孔孔	,深32.5m,覆 盖	层厚3.1m。										
孔		2	下伏	基岩为	白垩-古	近系	东湖群下	段含砾砂岩,钻	化揭穿全风化	层1.4,强风化	比层7.5m	□,中风化层켜	未揭穿。							
小		3、	时北	宕芯经过	地质鉴	定描述	5照像后,	木作保留。												
结																				
		Ħ	101:	工不公司	บ		_	金疋:周拌、	」又两、陈金从		吸心即	四: 丁义符		_		议仪	,历代四			

图 6.3-9 钻孔 HSZK8 剪切波测试成果图

黄石经开区•铁山区地震安评岩土工程勘察HSZK09钻孔柱状图

钻孔	化位置		黄石纲	を开区・	铁山区N	:30° 8	8′24.85″	E:115° 4′ 49.08″	孔口進面 高程	2	2	*	平均岩芯 采取率	强	%	弱	%	徽新	%		
钻孔	七目的		査	明场址	区各岩土	层结构	特征及工程	建地质特性	钻孔深度	34	. 5	*	风化层厚度	全 0	米弨	7.6	*	弱 21	.1米 全强	风化厚	7.6米
钻孔	1. 新度			0 90	1	钻机类	型	Y-150	覆盖层厚度	5.	8	*	地下水位	<u>急定水位</u> 変調日期	18.54 201911	* 20	并终	孔日期		20191119 20191119	
地	孔	高	厚	柱	状图	岩土	风化							标贯	測点	拠点	野切		岩土层平均	剪切波速	
层代	深	程	度		及	层	公志		地质	〔 描	述			放探	深	走	波		直方图(米/秒)	
号	(米)	(米)	(米)	钻孔	占结构	编号	ፓቱ							(击)	度(米)	时 (毫秒)	速 米/秒	100	200 300	400 500	600
				\mathbf{X}	X		wi	杂填土:	成分较为复;	杂, 表层)	 	目砂土,	往下为混凝		1	7.3	137.5				
Qł				\mathbb{X}		1	復	土路基,再往	下为粉土和砂	,部分砂	层取	芯不成	形。		2	7.1	140.6 143.2		139.2		
	3.50	18.50	3.50		117	-	盖	松臣秋十,	巡退舟 栏;	皆舟 取求	24	长柱机	林朔~可朔	4.00~4.30	4	7.4	223.6	l	_		
Q4	5 80	16 20	2 30	141	1/	2	层	初 从 第 二:	御骨 干品度中	□竺, 朳□	タクパ 生中4	クレイエイハ <u>卒</u>	,扒坐 可坐	10	5	7.7	228.1		228.	D	
	3. 00	10. 20	2. 50		1/10					111 101					7	4.9	232. 6 425. 2				
			ł				强		Le site for the s		ha -14- 17	112-310		1	8	2.3	428.4				
								14 百当风	后: 篆红巴、 化亚金 当乐幼	岐红巴, 耳 防旋	赵心 与	这 王同	部分全件状 1通 当类山		9	2.3	431.3				-
					-0	3	<u> </u>	的砾石名为	4) 里, 石灰む 石革砂岩 会量	在15%~2	10×20 0% 5	中, 九日	1种,石心干		10	2.3	436.5			413.	9
							化	砂。		<u>а</u> µ.10% 2	0/0, _		() 10 / 3 T 11L		12	2.3	438. 2				
	13.40	8.60	7.60												13	2.3	439.5				-
															15	1.9	531.2				
															16	1.9	635.4				
L			1												17	1.9	537.1 538.7				
K-Edn ¹							中								19	1.9	539, 6				
					E.o	2	<u> </u>								20	1.8	541.2				
								含砾砂	岩:紫红色、	砖红色,耳	权芯!	是长柱状	代,原岩结构		21 22	1.8	542. 5 544. 6				
	ļ						ļ	在岩芯断面.	上清晰可辨,	岩芯的结	构和	组成与	强风化层一		23	1.8	545.8				
					.0	4	凤	致,原岩矿	物仅长石风化	,岩质半	坚硬	,锤击7	「易碎。		24	1.8	547.9				547.8
															26	1.8	552, 9				
			1												27	1.8	554.3				
						2									28	1.8	557,5				
						-	化								30	1.8	562.8				
						•									31	1.8	563.1				
							ļ								32	1.8	565.3 565.3				
															<u> </u>						1
	34.50	-12.50	21.1	0										{							
L			Ł																		
				l.																	
							ļ														
1														ļ							
			1			1															
1																					
				1 1. 44-	- 101 Mar	+		al at here	71 / 55 0 4 5 1997	* 1 2 -	0										
钻		1.	本	した 大基岩シ	白经济打 为白垩-	支 术开 古近	友区・9 系东湖群	山区钻孔, 终孔 下段含砾砂岩。	九深34.5m, 覆 钻孔揭穿强风		8m。 1,中	风化层	未揭穿。								
孔		3	钻	北九内	故1段标	准贯	试验。	+1-100		,											
小		4,	钻	1. 岩芯线	全地质器	登定措	还照像后	ī,木作保留。													
结																					
		备	机:	土木公司	ij			鉴定:周洋、	宁文涛、陈金龙	ł		徽机制	图:宁文涛			1	校核	;房艳门			

图 6.3-10 钻孔 HSZK9 剪切波测试成果图

黄石经开区•铁山区地震安评岩土工程勘察HSZK10钻孔柱状图

钻	化位置	1	黄石纲	研区・	铁山区 N	:30° 8	28.55"	B: 115° 4′ 8.07″	孔口地面 高程	24	*	平均岩芯 采取率	强	%	弱	%	徽新	%		
钻	七目的		査	明场址	区 各岩土)	层结构	侍征及工君	地质特性	钻孔深度	32	*	风化层厚度	全 0	米强	4.8	3 米	弱 20	.2米 全强风	化厚	4.8米
钻	乳脑			0 90	4	钻机类	Ð	Y-150	覆盖层厚度	7	*	地下水位	<u>建定水位</u> 夏潤日期	22, 53 201911	* 17	开辫	孔日期	20	191116 191116	
地	FL.	高	厚	柱	状图	岩土	M /k						标贯	测占	测占	剪切		岩土层平均剪	切波速	
层	深	程	度		及	层	м н.		地质	质 描 述			及動探	深	走	波		直方图 (米	/秒)	
11、号	(米)	(米)	(米)	钻孔	结构	编号	分带						(击)	度(米)	时	速	100	200 300 4	00 500	600
					XX				砾石与十混。	存 十质松散	取芯不	成形,成分		1	7.2	139.4	<u> </u>			_
Q4	9 70	91 90	9 70	\boldsymbol{X}	X	1	覆	主要为棕黄	为新质黏土,	呈可~硬塑状.	切面粗	糖。含少量		2	6.6	152.7		149.7		
	2.70	21. 30	2. 10	1		\vdash	主	块石,粒径为	13 ^{~5cm,} 大者可	J达8cm,成分:	主要为办	6岩,呈次棱	3.00~3.30	3	6.3	155.5				
ord						,	,m.	角状						5	4.7	237.8		240.5		
44				1/1	VII	ŕ	层	▲ (小伝新-	上,退去舟太山	白色 古色	可親~2	調告 的な	5. 50~5. 80 6. 40~6. 70	6	4.6	243.5				
	7.00	17.00	4, 30	111	11			初 人名 中本 日本	山、陶贝口大力	太切面稍滑:	- 可坐 可 干 瑞 度 d	白玺 初性山	13	1	4.5	251.5				
							强	(等, 不易辮开		.с. ўзрачная,	1.4/2	T) MLL		9	2.2	448.5				
						3	风						-	10	2.2	451.3			454	4.6
	11 80	19 90	1 80				化	含佛祖(少岩:紫红色,	取心呈知在初	(, 石心え	反回租槌,饵		11	2.2	454.6				
		10.00	1.00			\square		机及胃, 矢7 构成半石的	下口的石心、 五苗(50%) 毕	石灰千空硬, 宮(35%) 长工	座山勿四 (15%)	n,无凹狎。 其由岩図和		13	1.9	530.9				1
								长石发生风	上快变,手捏呈	局 (30%), 民年 目粉末状。	(100),	大TT/目/月/14		14	1.9	532. 7				
					0				UAX 1 1111				-	15	1.9	534.2				
K-Edn ¹							÷.							10	1.9	537.5				
							ቻ							18	1.9	540.3				
														19	1.8	542.4				
														20	1.8	546.9				
						4	凤	含砾粗砂	妙岩:紫红色,	取芯呈柱状,	岩质半	坚硬~坚硬,		22	1,8	548, 1				549.2
								锤击不易断,	声哑, 岩芯中1	含有15%左右的	的砾石,)	成分多为灰		23	1.8	551.4				
								石和砂石, 粒	佺0.5 2cm, 全	次國次。				25	1.8	557.8				
														26	1.8	558.0				
ł			1				化							27	1.8	564.2				
		1												29	1.8	568.7				
														30	1.7	571.9				
														31	1.7	572, 2				ļ.
\vdash	32.00	-8.00	20. 2										-							
Ļ			1																	
				ļ.																
L																				
													1							
Į –			1																	
_																				
铅		1,	本	七为黄石	后经济 打	大开.	发区・铁	山区钻孔,终孔	化深32m,覆盖	层厚7m。		3 + 4 多								
孔		2.	下位	大基岩之	为日坐	古近系 准贯)	《东湖群 试验。	卜段含做租砂岩,	铂扎揭穿强风	Q化层4.8m,	甲风化用	云木揭穿。								
小		4.	钻	七岩芯约	经地质器	定描	述照像后	,未作保留。												
结																				
L		- FL	HT .	4-4-1-	a			收合, 田兴	白小体 财人卫	•	御知起	团, 白子海				抗抗	· 定体5	ส		
		铂	101:	工不公司	U			金正:周洱、	丁义将、陈金双		派化刑	国,丁义将				仅依	,厉把目	1		

图 6.3-11 钻孔 HSZK10 剪切波测试成果图

黄石经开区•铁山区地震安评岩土工程勘察HSZK11钻孔柱状图

钻	1位置		黄石绍	开区・領	秋山区	N:30° 8	8′ 52.01″	' E:115° 4' 33.76"	孔口地面 高程	34	*	平均岩芯 采取率	强	%	扇	%	徽新	%	
钻	目的		査	明场址区	各岩土	层结构	特征及工利	星地质特性	钻孔深度	15	*	风化层厚度	全 0	米强	3.4	*	弱 1.3	米 全强风化	厚 3.4米
钻	1 斜度 方向			0 90	4	钻机类	Ð.	¥-150	覆盖层厚度	6.3	*	地下水位	<u>最定水位</u> 現湖日期	30.9 201911	*	开线	孔日期	20191 20191	111
地层代号	孔 深(米)	高 程 (米)	厚度(米)	柱 北 及 钻孔	そ 图 を 結构	岩土 层 编号	风化分带		地质	6 描 述	_		标 贯 及 触 探 (击)	测点深度米	测点走时秒	剪切波速秒	岩 100 á	土层平均剪切 直方图(米/和 200 300 400	〕波速 ゆ) <u>500 600</u>
Q ^{pa1} Q ^{pa1} <u>J</u> ₂ βμ	<u>6.30</u> <u>9.70</u> <u>11.00</u>	33.50 27.70 24.30 23.00 19.00	5.80				發 益 层 强风化 中风化	杂填土: 成分为。含成量: 成分为。含质量: 形成一次为子。 物切成,不可。 为切成,不可。 有少。 的切成,不可。 有少。 名、一、 一、 一、 一、 一、 一、 一、 一、 一、 一、 一、 一、 一、	· 研石与主用。 一、研石与主用。 一、研石与主用。 一、研究上、 「「一、「「一、」」 一、「」 一、「」」 一、「」 一、「」」 一、「」 一、「」 一、「」 一、「」 一、「」 一、「」 一、「」 一、「」 一、「」 一、「」 二、「」 一、「」 二、「」 一、「」 一、「」 一、「」 一、「」 一、「」 一、「」 一、「」 一、「」 一、「」 二、「」 一、「」 二、「」 一、「」 二、「」 一、「」 二、「」 一、「」 二、「」 一、「」 二、「」 一、「」 二、「」 二、「」 二、「」 二、「」 二、「」」 二、「」 二、「」 二、「」 二、「」」 二、「」 二、「」 二、「」」 二、「」」 二、「」」 二、「」」 二、「」」 二、「」」 二、「」」 二、「」 二、「」」 二、「」」 二、「」」 二、「」」 二、「」」 二、「」 二、「」 二、「」 二、「」」 二、「」 二、「」 二、「」 二 二 二 二 二 二 二 二 二 二 二 二 二	杂、密表 肉如感角 石岩山 气闪纹沙 构基中,此为物为 人名 医马马斯 化二乙二乙二乙二乙二乙二乙二乙二乙二乙二乙二乙二乙二乙二乙二乙二乙二乙二乙二乙	取览1~ 过初~1~5~为多,"苏玻声"为"贾大"的""专业"的"专业"的"专业"的"专业"的"专业"的"专业"的"专业"的"专	成有岩 主等。	3.40~3.70	1 2 3 4 5 6 7 8 9 10 11 12 13 14	6.2 5.3 4.9 4.6 4.5 2.4 2.3 1.6 1.5 1.5 1.5 1.5	217.7 27 160.3 217.1 221.6 222.6 228.9 390.9 430.4 435.3 640.5 651.2 658.5 662.6 662.6		234.5	451.4 636.8 657.4
孔小结		1、 2、 3、 4、	本 下 付 子 行 行 行 行 行 行 行 行 行 行 行 行 行 行 行 行 行	L为更石 大基岩为 L孔内做 L岩芯经	空研5 白垩- 1段标 地质鉴	古近新進定描	及区• 5 东湖群 试验。 述照像尼	、叫区知孔, 癸九; 下段含砾砂岩, 中 后, 未作保留。	□/ホ:10m,復霊/ □侏罗统玄武岩	云序0.3m。 計,辉绿岩。(钻孔揭穿	强风化层3.4	m, 中风 [,]	化层未	卡揭到	ŧ.			
		- 名	机:	土木公司				鉴定:周洋、	宁文涛、陈金龙	t	微机制	图:宁文涛				校核	: 房艳国		

图 6.3-12 钻孔 HSZK11 剪切波测试成果图

黄石经开区•铁山区地震安评岩土工程勘察HSZK12钻孔柱状图

钻	化位置		黄石乡	研区•	铁山区	N: 30°	8′ 55.40″	E:115° 4′ 3.28″	孔口地面 高程	29	*	平均岩芯 采取率	强	%	弱	%	徽新	%		
钻	化目的		査	明场址图	X 各岩土	层结构	特征及工程	地质特性	钻孔深度	20.8	*	风化层厚度	全 0.7	米强	4.6	*	弱 9	.2 米 全强风	化厚	5.3米
钻	凡 銷度 方向			0 90	3	钻机类	型	Y-150	覆盖层厚度	6.3	*	地下水位	<u>兼定水位</u> 夏夏日期	25.2 201911	* 11	开奠	孔日期	20	191110 191110	
地	孔	高	厚	柱>	状图	岩土	51 //-						标贯	测占	测占	剪切		岩土层平均重	[切波谏	
层供	深	程	度		及	层	мю		地质	质 描 述			及餉探	深	走	波		直方图 (米	/秒)	
号	(*)	(米)	(米)	钻孔	结构	编号	分带						(击)	度(米)	时 (豪秒	速 米/秒	100	200 300 4	00 500	600
					VII		_	粉质黏土	: 砖红色、肉	1红色,取芯以	柱状为	主,少量碎		1	4.3	230.2				_
				11	11/		覆	块状,呈硬塑料	伏,切面略粗糙	6,手捻有颗粒	感,干强	腹、韧性	1.60~1.90	2	4.3	232.4				
${\tt Q}_4^{\rm pal}$						1	盖	中等。含少量	砾石,成分为	灰岩,呈次棱角	自状,粒	径0.3 [~] 1cm。		4	4.4	231.4		231.5		
				11	11		层	孔深2~6.3m,	灰绿色、棕黄	色粉质黏土,	偶夹砂料	竝,呈可塑~硬		5	4.3	230.9				
L	8.30	22.70	6.30	/1/	11	1	A H //	塑状,湿度湿,	土质均匀,岩和	芯刀切面稍滑	,干强度	中等。		6	4.3	235.2			_	
	1.00	22.00	0. 10			2	至风化	今正知び	些, 举行舟 顶	大夕日应州	臣 皇府	11日毛畑	{	8	2.2	447.3				
						3	强	磁 磁后呈松	为 系红色, 电	以心多主件庆 品崩解 受风化	化 田影	响 原岩结		9	2.2	449.1			45	7.2
							化	构已被破坏,	组成岩石的长	石矿物已全	部风化、	呈黏土状,		10	2.2	452.4				
	11.60	17.40	4.60					砾石在岩芯表	面呈凸起状,	砾石粒径多	在0.5~1	cm, 最大可		12	2.0	502.3				1
K-Edn				0		-		达3cm左右,破	石成分多为办	K 岩和砂岩。				13	1.9	535.1				
			ļ		ě		中	全砾粗矿	岩, 紫红色	取芯多呈短料	:状,岩;	新面可辨	1	14 15	1.8	540.7 543.6				
								原岩结构, 部	3分大小在2~3	cm的砾石散落	在岩芯	中,其余砾		16	1.8	548.4				544.1
		▲ 风 (原岩结构,部分大小在2 ⁻³ cm的砾石散落在岩芯中,其余砾 石多在0.2 [~] 0.5cm,构成岩石的矿物石英(50%)、岩屑(35%)、 低石(15%)、长石部分风化,砾石多呈次棱角状。												17	1.8	551.3				
							化	长石(15%),长	石部分风化,	砾石多呈次核	角状。			18	1.8	554.7				
						-		含砾粗矿	岩,紫红色	取芯呈柱状.	析面可著	峰原岩结构	1							
\vdash	20.80	8, 20	9.20			-		为含砾粗砂结	构,砾石多为	砂岩岩屑和石	英,大	▶在2 [~] 3cm,								
								含量8%~10%,	成岩矿物微风	化。										
l			ļ			Ł		<u> </u>					1							
		l												Ļ.						
													1							
	l			1																
							1													
l						Ł														
		l												Ļ						
													1							
				1				l												
	1						1													
[{														
1		l																		
1													1	1						
1																				
1				1																
							1						1							
E	1												-	•						
铅		1.	本孔	为黄石	经济技	术开发	友加 ぜい	山区钻孔,终孔孔	」深20.8m,覆盖 孔場空全図ル	昰层厚6.3m。 阜07. 瑞河	上层4 6	m. 中國化昌·	未揭空							
A		3	钻孔	孔内做	1段标/	贯入	试验,取	导岩土样1件		A COLORING	J/A 1. 0									
小		4、	钻孔	岩芯经	地质鉴	定描述	⊀照像后,	未作保留。												
绐																				
L			-H1	1 + ^ -	4			冰台. 四米	白子法 财人业		编計曲	图, 出水法				坊坊	- 皮膚	5		
		Ħ	101:	工不公司	บ			金正、周井、	」又符、陈金儿		吸加制	国: 丁义将				议权	, mitel	-		

图 6.3-13 钻孔 HSZK12 剪切波测试成果图

黄石经开区•铁山区地震安评岩土工程勘察HSZK13钻孔柱状图

钻孔	化位置		黄石纲	研区・	铁山区 N	1:30° 8	8′21,46″	E:115° 2′ 53.78″	孔口地面 高程	23	*	平均岩芯 采取率	强	%	弱	%	徽新	%		
钻孔	化目的		査	明场址团	X 各岩土	层结构	特征及工程	地质特性	钻孔深度	34. 3	*	风化层厚度	全 4.3	米强	15	*	弱 11.3	3米 全强风	化厚 19.	.3米
钻	化病			0 90	1	钻机类	N	Y-150	覆盖层厚度	3.7	*	地下水位	<u>地定水位</u> 夏洞日東	18.93 201911	米 17	开鉄	孔日期	201	91116 91115	
地	孔	高	厚	柱	状图	岩土	凤化						标贯	测点	測点	剪切	岩	土层平均剪	切波速	
层代	深	程	度	2	及	层	山西		地员	质 描 述			放探	深	走	波	1	直方图 (米	/秒)	
号	(米)	(米)	(米)	钻孔	结构	编号	שרות						(击)	度 (米)	町 (毫秒)	速 米/秒	100 2	200 300 40	0 500 6	600
Q4	1.30	21.70	1. 30			1	覆	杂填土:	主要成分为粉	計,杂色,空	獻大,含	量约为75%,		1	7.1	140. 4	1	44.9		
Qedl						2	盖	结构松散,取	(样不成形,手	捏易碎;含少	量块石,	粒径2~5cm,		3	6.2 5.5	162.2		196.1		
	3.70	19.30	2.40	2	14		744	↓最大可达8cm	a, 原岩为灰岩	,用于填方			4 40~4 70	4	3.4	290. 8		L		
							全日	粉质黏:	土:砖红色、肉	肉红色, 取芯呈	柱状,和	肖密状, 手捏	28	5	3.1	322.6 331.9				
						3	化化	\易碎,切面粗	1糙,手捻有明	显的颗粒感				7	3.0	334. 9		34	5. 0	
	8.00	15.00	4.30					泥质粉石	砂岩:紫红色	,受风化作用	影响,岩	石已完全失	l.	8	3.0	338.4 423.1			٦	
								↓ 去胶结, 无法	辨别原岩结构	钩、构造,取芯	呈散砂	状,碎块状,		10	2.3	426.8				
				 	i i i		-97	↓ 手捏易碎, 原	民者霸土化				1	11 12	2.3	428.5 429.3				
	l				i i		强							13	2.3	430.5				
					1									14	2.3	432, 4				
						4	风	泥质松对	中本今年から	3. 柴灯缶 芋	式幼球	碎 取去名		16	2.3	439.7			438.2	
K-Edn ¹								呈碎块状、散	10次,岩质较	软,手可掰断、	捏碎	r, 409		17	2.3	440.2				
														19	2.2	445.1				
							化							20	2.2	447.7				
														21 22	2.2	498, b 450, 8				
	23.00	0.00	15.0										-	23	2.2	451.2				
														24	1.9	523. 4 526, 7				
							中							26	1.9	528.3				
1			1					加氏教が	山古太可加山		1++	あまって		27	1.9	531.5 533.2				
						5	风	死 质 初 忆	石光古味砂石 そ	5: 紊红巴,石 5: 紊红巴,石	r心元金 结构	,		29	1.9	535.8			53	33. 5
								JT.W. VEAL.	() 4 / ((()))	1.01//////	4173			30 31	1.9	536.4 537.3				
							化							32	1.9	540. 5				
														33	1.9	542.1				
⊢	34.30	-11.30	11.3	0									-							
l l			ł			1							ļ							
				ł																
	ļ						1													
			l			{														
1													1	1						
F.	Τ	 _	-				<u> </u>					5	•							
钻		1,	本孔	为黄石	经济技	术开发	反・铁	山区钻孔,终孔孔	【深34.3,覆盖	层厚3.7m。				/1. 😅	. صر . ا	*				
孔		2, 3,	下伏	基岩为	日坐一	百近系 住贯入	东湖群下 试验。	段泥质粉砂岩夹	长宫佛砂岩,钻	九獨穿全风化	公层4.3m	,强风化层1	m,中风	化层法	木揭	牙。				
		4,	钻孔	岩芯经	地质鉴	定描述	术照像 后	未作保留。												
结	[▶] 4、钻孔岩芯经地质鉴定描述照像后,未作保留。 [★]																			
		名	机:	土木公司	đ			鉴定:周洋、	宁文涛、陈金龙	1	徽机制	图:宁文涛			1	校核	: 房艳国			

图 6.3-14 钻孔 HSZK13 剪切波测试成果图

黄石经开区•铁山区地震安评岩土工程勘察HSZK14钻孔柱状图

钻	化位置		黄石纲	新区・	铁山区 N	1:30° 8	8′ 58.63″	E:115° 3′ 21.43"	孔口地面 高程	29	*	平均岩芯 采取率	强	%	弱	%	徽新	%	
钻	化目的		査	明场址图	区各岩土	层结构	特征及工程	昆地质特性	钻孔深度	26.9	ж	风化层厚度	全 0.4	米强	11.6	6米	弱 7.	4 米 全强风(北厚 12米
钻	孔病			0 90		钻机类	型	Y-150	覆盖层厚度	7.5	*	地下水位	<u>地定水位</u> 東湖日第	27.83 201911	米 10	开鲜	孔日期	2019 2019	1109 1109
地	孔	高	厚	柱	伏图	岩土	风化						标贯	测点	测点	剪切	4	皆土层平均剪切	初波速
居 代	深	程	度	1	及	层	分费		地质	乱 描 述			触探	深	走时	波		直方图 (米/	秒)
号	(米)	(米)	(米)	钻孔	结构	编号	11						(番)	及(米)	可 (毫秒)	迷 米/秒	100	200 300 400	500 600
Q4	1.60	27.40	1.60	XX		1		杂填土:	填土成分为	棕黄色粉土, 泊	显度稍浅	1,取芯呈柱	1.50~1.80	1	7.1	140.3		140. 3	
					Vii		援	↓ 状,干强度中	呼,切面粗糙	;含少量块石,	粒径4	8cm, 成分多	9	3	4.5	222.1			
opal	1			11			盖	入外石					4	4	4.4	223.6		221.1	
41						Ĺ	层	粉质黏:	上: 黄褐色, 刵	双芯多为长柱	伏,硬~可	丁塑状,岩芯		6	4,3	220.4			
	7.50	21.50	5.90	11	11	1_		切 即 相 捐 捐 捐 捐 捐 捐 捐 捐 捐 捐 捐 捐 捐 捐 捐 捐 捐 捐	皮湿, 十浊度 率 手捏易碎	中寺。九休0. 切面知緒 手:	30.8m 没有明5	內你與巴切 昆的顆粒感		7	4.2	230.6			_
	7.90	21.10	0.40		-0	3	全风化	一千强度低	L) 1 11.90 PT,	99 JUL 11 12 3 3 3		EH 3 494 4 20 6 9		9	2.3	435.3			
						D · A		今冊砕	去, 裝灯色 頂	7芯早碎伸状	散砂	1 受风化作	1	10	2,3	437.2			
							强	日影响,原	台:紧红口,4	去胶结、结构、	、构造	「可辨认,手		11	2.3	438. 4 440. 3			
						1 - 10	l	捏易碎,成分	可见石英(55	8)、长石(25%	6)、岩屑	膏(20%)等		13	2.3	442.6			
K-Edn	1					4	风		岩. 柴灯舟 B	7芯豆石土中	放州	2 岩芯林子	1	14 15	2.2	446. 7 449. 5			447.0
						10.1		破碎, 岩质软	在: 系红口, 4 软. 岩芯断面	可辨原岩结构	、叶庆1 1. 为含砚	新和砂结构。		16	2. 2	452.4			
l			l				化	原岩部分失	去胶结,肉眼可	「见长石、岩	屑,部分	风化成黏土		17	2.2	454.8 456.3			
	19 50	9 50	11 6					状,吸水后:	易软化、崩解					19	2.2	457.5			
	15.00	5.00	11.0							_			1	20	2.0	500.2 543.8			
							中	含砾砂油	告:紫红色,取	芯呈柱状,岩;	达较为完	整,岩质较		22	1.8	545.4			543.2
						5	凤	软,原岩结构	勾清晰可辨,成	治矿物基本很	散风化,	岩石中夹有		23 24	1.8	547.3 550.8			010.2
							4	少量粉砂岩						25	2.6	552. 1			
	26 90	2 10	7 40			<u> </u>	n												
	20. 30	2.10	1.40										1						
														1					
							ļ												
Į –																			
		ļ																	
														ļ					
				ł									ļ						
	ļ						1												
			l			1													
1																			
	1	<u> </u>	-			-													
铅		1,	本孔	为黄石	经济技	术开发	区・铁口	山区钻孔,终孔孔	深26.9m,覆盖	层厚7.5m。	1	6 ± H # #	3 + 12 +						
A		2, 3,	下伏钻孔	基岩为孔内做	日垩-古 1段标准	5近系 主贯入	乐湖群下 试验,取	段含砾砂岩,钻子 得岩土样1件。	1揭穿全风化)	层0.4m,强风	化层11.	6m,中风化)	云木揭穿。						
小		4,	钻孔	岩芯经	地质鉴	定描述	上照像后,	未作保留。											
结																			
<u> </u>		쉮	机:	土木公司	ĩ			鉴定:周洋、	宁文涛、陈金龙		徽机制	图:宁文涛			3	校核	房艳国		

图 6.3-15 钻孔 HSZK14 剪切波测试成果图

黄石经开区•铁山区地震安评岩土工程勘察HSZK15钻孔柱状图

钻	孔位置		黄石纲	新区・	铁山区 N	1:30°8	32.96"	E:115° 3′ 31.95″	孔口絶面 高程	19	*	平均岩芯 采取率	强	%	褭	%	徽新	%		
钻	孔目的		査	明场址	【各岩土	层结构	寺征及工程	呈地质特性	钻孔深度	31.5	*	风化层厚度	全 11.1	米强	3. 5	*	弱 8.9	9 米 全强	凤化厚	14.6米
钻	孔前			0 90	4	钻机类型	빈	Y-150	覆盖层厚度	8	*	地下水位	<u>建定水位</u> 東調日期	22.53 201911	朱 09	并终	孔日期		20191108 20191108	
地	孔	高	厚	柱;	伏 图	岩土	凤化						标贯	测点	测点	剪切	岩	士层平均	剪切波速	
层代	深	程	度		及	层	ム曲		地质	质描 述			放探	深	走	波		直方图(米/秒)	
号	(米)	(米)	(米)	钻孔	结构	编号	分审						(击)	度(米)	时 (毫秒	速 米/秒	100	200 300	400 500	600
	1.20	17.80	1.20		\mathcal{L}	1		块石夹:	中砂:其中块石	订颜色为灰白 (色, 块径	在20 [~] 40cm,		1	7.2	139.8	1	140.5		
0 ^r				\mathbb{X}	ĸ		覆	呈棱角~次核	6角状,原岩成	分主要为灰岩	,结构机	公散;中砂含		2	5.0	198.3				
₩4				\sim		2	*	┃ \ 量约占30%,:	土黄色, 呈松龍	故状。			3. 70~4. 00	4	4.8	208.6		206.7		
	5.10	13.90	3.90	\boxtimes	X		盖	粉质黏	土: 棕黄色, 取	7芯名为长柱;	犬. 硬 [~] 百	「麹状, 岩芯	8	5	4.7	214.3		L		
ord				11	11		层	切面稍滑.清	度湿,干强度	中等,局部含	少量植物	根茎:含少		6	4.4	228.7		291 1		
44	8.00	11.00	2,90		1/	1 *		量砾石,含量	7%,成分复杂	粒径一般3~6	òmm.			8	4.3	234.2		201.1		
	0.00	11.00							L rt /rt At The	世々口信計山	いして	1440 T 12	-	9	3.0	331.5		_		
				1				○ 府原第二 府由第二部派	工: 传红巴, 収 1 毛可坦应 E	心多主粒性の	, 少重作	F 厌 仄, 干 浊 注 厶 竣 盾 当		10	3.0	334.5				
Ļ							全	及中守, 相道	2, 丁可任件, 3	三哎至小,石心	咧叫儿	公 力 <i>孙</i> 承 石		11	3.0 3.0	336.8				
								1201-30					4	13	2.9	340.1				
						4	风						ļ	14	2.9	342.7			344. 2	
								泥质粉矿	碎严重,岩		15	2.9	345.2							
				i i i			化	质极软,风4	胶结,原岩		17	2.8	351.3							
								结构、构造L	岩屑等。		18	2.8	354.6							
	19.10	-0.10	11.10							4	19	2.8	358.4			_				
X-Edn							强	泥质粉砂	夜为破碎,		20	2.3	442.5			15				
1						5	14	解。		22	2.2	446. 1			40.	5. 5				
	22.60	-3.60	3.50				10			-	23	2,0	510.3				1			
)	24	1.9	526.5				
							中	Vet ett. det er	D LL HILL M		26	1.9	532.7							
	1						N.	泥质粉的	伏 ,		27	1.9	538, 2				534.7			
						ľ	24	元登,石灰も	Fo		28	1.9	542.3							
			ļ				化				30	1.8	543. 5							
ł.																	·			
_	31, 50	-12.50	8.90										1							
				1				1												
	ļ																			
Į.			1																	
		ļ																		
				ł																
	1																			
						ļ														
1			{										1							
	Τ		,																	
钻	i	1,	本狂	し为黄石	经济技	技术开;	友区・铁	山区钻孔,终孔	孔深31.5m,覆	盖层厚8m。										
孔		2	下住	基岩	白垩	古近系	东湖群	下段泥质粉砂岩	夹含砾砂岩, 针	记揭穿全风	七层11.	lm,强风化层	3.5m,中	风化	层未	揭穿	0			
小		3.	知り	山北内保	Q1技标 圣地质》	任 页人 定描	、 瓜 葱,」 尤照像 后	X 侍石工件1件。 1 未作保留。												
结						_, _, _, _,		A THE PLANE												
L																				
		铅	闭1:	土木公司	0	г	<u>र</u> ्ष ८	登定:周洋、 2 16 と	デズ海、陈金茂 ヒ て ト エエログ	5 71/15 言	成 机制 亩+□:	图:宁文海 3 亡: 同山: _1	よ田	反		仪核	;厉鬥国			
						I	핔 0.	コー10 兌	17L N.S.	ムヘエン ラ	ュリ	火 /火 ��	以不	\mathbb{Z}						

黄石经开区•铁山区地震安评岩土工程勘察HSZK16钻孔柱状图

钻	1位置		黄石约	新区・特	铁山区 N	:30° 8	' 18.63"	E:115° 2′ 17.85″	孔口地面 高程	24	*	平均岩志 采取率	强	%	霸	%	徹新	%		
钻	七目的		査	明场址区	【各岩土	层结构	特征及工程	呈地质特性	钻孔深度	20. 2	*	风化层厚度	全 0	米强	4.8	*	弱 13.	2米 全强风	化厚 4.	8米
钻	乱崩			0 90	4	站机类	型	Y-150	覆盖层厚度	2.2	*	地下水位	<u>建定水位</u> 观测日期	19.28 201911	* 08	开鉄	孔日期	2019	1107 1107	
地	孔	高	厚	柱名	犬图	岩土	凤化						标贯	测点	测点	剪切	4	皆土层平均剪	切波速	
层代	深	程	度	2	及	层			地员	6 描述			及触探	深	走	波		直方图 (米/	(秒)	
号	(米)	(米)	(米)	钻孔	结构	编号	分帘						(击)	度(米)	时 (毫秒)	速 米/秒	100	200 300 40	0 500 6	00
Q4	1. 20	22.80	1.20	X	\mathbb{N}	1	覆盖	素填土:	成分以粉土	为主,杂色,耶	(芯呈碎	块状,稍密~		1	7.6	130.3	1	130. 3		
Q ^{edl} 2-3	2.20	21.80	1.00			2	层	中密,切面粗	職,稍湿,干強	最度低,局部含	植物根	茎。		2	5.5	180.2		180. 2	1	
							强	▲ 新雨梨-	上:砖红色 取)	芯呈確快状	十质均匀	1.切面稍滑.	1	4	2.3	426.4				
						3	风	呈可塑状,手	抢有颗粒感,	干强度中等。		*) /* *//*/		5	2,3	429.6			425.8	
	7.00	17.00	4.80				化	治底松1	冰坞, 建ケ东	的发展这种相		计行为少	1	6	2.3	432.1 435.2				
								11 11 11 11 11 11 11 11 11 11 11 11 11	分布孔深6~6.	轨心以件获7 5m、岩芯较为	动碎 关	上后较数 手		8	1.9	520.4				
K-Edn ¹								│ 可掰断,锤击	声哑,吸水后	易软化、崩解	r Fo			9	1.9	522.6				
			ļ				中						1	11	1.9	529.3				
								泥质粉研	少岩夹含砾砂岩	岩: 砖红色,1	反芯以相	状为主,含		12	1.9	531. 2				
						4	R	少量碎块状,	岩芯完整,岩	质较软。粉得	少质结构	1,含少量黏		13	1.9	533.7			534. (0
								土矿物及胶约	吉物,胶结情况	一般,断口参	差,手搓	有砂感,岩		15	1.9	538.4				
								质较软,手挂	星易碎。含砾石	砂岩为紫红色	,含砾细	砂结构,砾		16	1.9	540.2				
							化	石含量占15%	,主要成分为第	幽灰色石英、 ●~波圆₩	灰岩岩)	肖, 粒谷3 5	ļ	18	1.8	543.8				
								皿, 方远磨圆	取,主八夜)	用 "八四八。				19	1.8	545.0				
	20. 20	3.80	13.20										-							
				l																
	ļ]							Ļ						
													ļ							
l			1																	
				1				1												
	ļ																			
			Ļ			1														
Ł																				
]			1													
														1						
						Į														
1			{																	
L	Ļ														_					
钻						h		1 mm 1 mm 1 mm												
利		1, 2,	本孔	为黄石	经济技	术开加	友区・铁	山区钻孔,终孔孔 下段泥质粉砂岩动	L深20.2m,覆盖 在含砾砂岩 44	盖层厚2.2m。 泊.揭穿强风4	七层4.8m	,中风化层分	、揭穿。							
1		3	钻孔	岩芯经	地质鉴	定描述	述照像后	,未作保留。	<u>ан мүй (1)</u> М	/	Jiet at U									
44	小 3、钻扎宕心绘趣质釜足描述照像后,木作保留。																			
		슆	机:	土木公司	1			鉴定:周洋、	宁文涛、陈金龙	l .	徹机制	图:宁文涛	n —	_		校核	: 房艳国	1		

图 6.3-17 钻孔 HSZK16 剪切波测试成果图
长江三峡勘测研究院有限公司(武汉)

黄石经开区•铁山区地震安评岩土工程勘察HSZK17钻孔柱状图

钻	化位置		黄石編	研区・	铁山区	N:30° 8	3′ 43. 37″	E:115° 1′ 58.40″	孔口並面 高程	21	*	平地岩芯 采取率	强	%	扇	%	徽新	%	
钻	化目的		査	明场址	区各岩土	层结构	特征及工和	地质特性	钻孔深度	15.2	*	风化层厚度	全 0	米强	2.3	*	弱 7.	2 米 全强风(北厚 2.3 米
钻	乱加			0 90		钻机类	۲Ų	Y-150	覆盖层厚度	5.7	*	地下水位	<u>現定水位</u> 東海日第	19.44 201911	* 07	拼聲	孔日期	20191 20191	1105 1105
地	孔	高	厚	柱:	伏图	岩土	國化						标贯	測点	測点	剪切	4	岩土层平均剪り	刀波速
层代	深	程	度		及	层	л <u>ж</u>		地员	贡 描 述			放振	深	走	波		直方图(米/	秒)
号	(米)	(米)	(米)	钻孔	结构	编号	分帘						(击)	度(米)	时 (毫秒)	速 米/秒	100	200 300 400	500 600
$\mathbf{Q}_4^{\mathrm{r}}$	1.00	20.00	1.00	$\boldsymbol{\Sigma}$		1		杂填土:	其中.0~0.2	为人工路基	民凝土均	₩:0.2 [~] 1m为		1	7.1	140.3		140.3	
				11			覆	人工回填块	石,块石粒径-	·般为3~5cm,)	成分为友	天岩 。	2.30~2.60	2	4.9	202.3			
Q4	l				1	2	盖	\						4	4.6	215.5		210.4	
L	5.10	15.90	4.10	in			层							5	4.5	220.3		L	
Q ₂₋₃	5.70	15.30	0.60	17/1	11	3	强	粉质黏土	::深褐色、棕	黄色,上部取	芯不成刑	N, 为流塑状,		6	4.1	242, 5		242.5	7
	8.00	13.00	2.30			4	风化	下部呈柱状,	岩芯呈软型 ヘム島東エ (0	便型状,切面;	用滑,十	强度甲等,于		8	2.2	458.3			454.9
ł								\$211 我和感,	百少重哪日(8	物,枢伯3 500	,百值很	切恨全。	1	9	1.8	550. 1			
					E		中							10	1.8	554.5 559.4			
K-Edn						5	凤						4	12	1.8	563, 1			560.4
						• · •		合砂砾	盼质黏土:为	暗紫红色,取	芯呈短柱	主状,岩性夹		13	1.8	565. 6			
							化	水后强度受	局, 月 个易切	井, 呈半回结 ナナ 約分0	庆, 宕心	王要为宫砂		14	1.8	570.3			
⊢	15.20	5.80	7.20	_		-		你你你烦酒工,	化标合里40%	工力,杜仕U.	四左右	,夕王仄四							
								1/12/13/17, 14	5万.王论历小。				-						
ł								合砾砂	岩:紫红色,其	中5.7 6.9m	权芯呈存	卒块状;6.9							
								8.00取心呈	超杜 切、		尿石结 百岁	构, 为宫际 由 研 石 一 船							
								11 租伊 纪 何, 》 11 粉 经 2~8mm	石心中可见夜 晶大可达2cm	用 扒 次石1%4	。 尿石	中140-10X 茁、友岩砾							
				1				石.石英砾石	政八可远20m, 5约占55%. 灰岩	上安成月75%	6. 分选服	感致差。							
							1		L Mart Th	# D V H-10	KE LA-JD	山井台樹	-						
									石:紫红巴, 耿 今亚细环结束	心呈长杜状、	<u>粗杜</u> 衣	,石心元登, 西武公治相							
								石灰权主使,	古冰圳伊泊作	9,1957日百里日 33~5mm 分选	第一章	安成九月四日		1					
1								~次圆状。	//11 /11 /H) / 1 1			A) ENRA	1						
		1											-						
)												
														ļ					
Ł			1										1						
				ł				ļ											
							1												
						Į.													
Ł			1										1						
1						1													
1																			
\vdash	4	-	1											1					
铅		1	太子	人为黄7	经济	计开	发区。鲜	山区钻孔终孔	1.深15. 2m. 署	盖层厚5.7m。									
刊		2	下化	基岩	白垩	古近系	东湖群	下段泥质粉砂岩头	夹含砾砂岩, 钅	記揭穿强风	七层2.3	,中风化层;	未揭穿。						
小		3.	钻孔	1. 北内伯	如段标	准贯) 22世	试验。	未作保留。											
结		T	чц	0/1 'U'S	LAD/943		~ BA/H) / (*) F VIY 田 *											
		名	机:	土木公司	ij			鉴定:周洋、	宁文涛、陈金龙		徹机制	图:宁文涛				校核	: 房艳国		

图 6.3-18 钻孔 HSZK17 剪切波测试成果图

长江三峡勘测研究院有限公司(武汉)

黄石经开区•铁山区地震安评岩土工程勘察HSZK18钻孔柱状图

钻	孔位置		黄石约	研区・領	铁山区 N	1:30° 9	' 16.38"	E:115° 10′ 24.31′	孔口地而 高程	20	*	平均岩芯 采取率	强	%	弱	%	徽新	%	
钻	孔目的		査	明场址区	【各岩土	层结构	特征及工利	星地质特性	钻孔深度	16.5	*	风化层厚度	全 0	米强	0	*	弱 16.	5米 全强风化	厚 0米
钻	孔前			0 90		钻机类	型	Y-150	覆盖层厚度	5	*	地下水位	<u>建定水位</u> 東調日期	17.77 201911	* 22	并终	孔日期	2019112 2019112	1
地	孔	高	厚	柱者	犬 图	岩土	风化						标贯	測点	测点	剪切	ž	自土层平均剪切	皮速
层代	深	程	度	2	B	层	公書		地员	6 描 述			放熊茶	深	走	波		直方图(米/利)
号	(米)	(米)	(*)	钻孔	结构	编号	2 1						(击)	度 (米)	时 (毫秒)	速 米/秒	100	200 300 400	500 600
Q	0.60	19.40	0.60	<i>i</i> //		1	题	杂填土:	褐黄色,成分	由粘性土、社	沙以及研	碎石组成,结		1	6,2	160.4	[160.4	
oedl				61%	1/	٩,	盖	▲ 构松散, 湿~的	包和,含少量生	活垃圾。				3	5.3	180. 3		201.0	
44						<u>ו</u>	层	含砾粉质	质黏土:黄褐色	,取芯呈柱状	,切面和	削滑,湿度湿,	4, 20~4, 50	4	4.7	212. 1			
_	5.00	15.00	4.40	<u> </u>	Ľ4	<u> </u>		呈软塑~可塑	状,干强度中等	等,手捻有颗	泣感,含	砾石(10%),	9	5	4.5	220.4			
					臣		r	成分为灰岩,	粒径一般0.	5 [~] 3cm, 分选摩	圆较差	,呈次圆~次		7	1.6	614.5			
				┢┰╫┰┥			中	\ 棱角状。						8	1.6	617.2			
				타파	FF									9	1.6	619.4 621.5			
€ 2-3						3	凤							11	1.6	623.6			621.7
								白云质为	天岩, 灰白色, 」	取芯多呈短柱	状,岩质	§坚硬,锤击		12	1.6	624.1			
				╺╧┲╧	¦;===;+	4	化	户 扼 , 火石衣	囬反肖裕九、	溶洞,且伦约	0.3 IC	11, 方斛有脉	L .	14	1.6	628.1			
								○ 及月。					1	15	1.6	630.7			
	16. 50	3.50	11.50																
						Ļ													
l																			
														ł					
				ļ															
	ļ.																		
						{													
L																			
	ļ																		
						1													
Į.																			
													1	1					
				1			ļ												
	Ļ																		
			l			1													
\vdash	Τ	L	-											-		-			
钻	i	1.	本孔	为黄石	经济书	术开始	发区・铁	山区钻孔、终孔子	【深16.5m,覆言	盖层厚5m。									
升		2,	下伊	基岩为	中-上	寒武统	(€2-3)灰白色白云岩	、白云质灰岩	,钻孔中风化	层未揭	穿。							
小		3.	斩 打 钻孔	北内做	1段标	度员人 定描:	、 瓜 鄉。 述照像后	,未作保留。											
结	1					1.000													
L			-Hr	1-1-0	न		-	收占, 田兴	白子体 降人力		油山山	图, 白水油				**	- 良藤屋	1	
		H	101:	工不公司	u			金正:周平、	丁又府、陈金疋		派 们问	国;丁义符		_		议仪	,方把西		

图 6.3-19 钻孔 HSZK18 剪切波测试成果图

长江三峡勘测研究院有限公司(武汉)

黄石经开区•铁山区地震安评岩土工程勘察HSZK19钻孔柱状图

钻孔	化位置		黄石纲	チェー	铁山区N	:30° 9	′ 30. 12″E	:115° 10' 41.63"	孔口地面 高程	17	*	平均岩芯 采取率	强	%	弱	%	徽新	%		
钻	化目的		査	明场址	区各岩土	层结构	特征及工利	建地质特性	钻孔深度	16.5	*	风化层厚度	全 0	米强	0	*	弱 11	.5米 全强	虽风化厚	0米
钻	乱崩			0 90		钻机类	۳U	Y-150	覆盖层厚度	6.1	*	地下水位	<u>稳定水位</u> 東調日期	15.12 201911	*	开终	孔日期		20191116 20191116	
地	孔	高	厚	柱;	伏图	岩土	R. AV						标贯	测占	测点	剪 切		岩土层平均	的剪切波速	<u>[</u>
层代	深	程	度		及	层	/ - HL		地员	6 描 述			及触探	深	走	波		直方图	(米/秒)	
号	(米)	(米)	(米)	钻孔	结构	编号	分节						(击)	度(米)	时 (毫秒	速 (米/秒	100	200 300	400 500	600
								杂填土:	土黄、褐黄	色,主要由粉)	质黏土组	1成,岩芯结		1	7,2	138.1				
0ľ				\mathbf{X}		1	復	构松散,呈	次塑~流塑状,	局部含少量研	石,成分	}为灰岩,棱		2	7.2	139.6		140.8		
	ļ			$\boldsymbol{\mathcal{X}}$			盖	角~次棱角状						4	7.0	142.2				
Opal	5.00	12.00	5.00	1		4	层	含卵砾	中砂:黄褐色,	取芯呈散砂状	,密实质	度稍密,中砂		5	7.0	143.6			350 0	
44	0.10	10. 90	1.10			<u> </u>		粒径在1.5~2	2mm,主要成分	为石英、岩屑	,呈次四	到状;卵石粒	6.20~6.50 18	7	1.6	620. 3				
				╞╴╍┾╸	┠╖┿┚	3-1		\	成分为灰岩,多	多呈次圆 次核	節狀。			8	1.6	623. 5			1	624.1
1	10 30	6 70	4 20		┍╫╌	р п	Ŧ	白云质	灰岩:灰白色,	取芯呈短柱状	t,少量 t	长柱状, 岩质		10	1.6	627.3				
Ti	10.00	0.10	1. 20	臣			51	坚硬,锤击声	「脆,有明显的	回弾。				11	1.7	576.8				Γ
125				臣		1	~	友 崇,清	書友色 取芯号	磁体状 短	主 米 主	中磁体状分		12	1.7	582.1				500.0
				Ē		3-2	化	布孔深10.3	13m,岩芯较	坚硬,锤击声	脸,有回	弹。部分岩		14	1.7	584.6				002.2
				E		1		芯表面可以表	看到岩溶孔洞	发育成蜂窝状	0			15	1,7	587.3				
L	16. 50	0.50	6.20			1							-							
ļ			{			1														
				ļ																
ł –			1																	
				ł																
			Ļ																	
				1				ļ						1						
	1						1													
			{			1														
		l																		
\vdash	-		1	I			L						1	1	L	L	L			
钻			+0	小井丁	(以)沙井	- P .TT.4	ام .	1074171 447171												
孔		1.	本 九 下伏	万 更石 基岩为	空阶技中三叠	木井 友 统嘉隆	な江组灰	山区市九,癸九九	」(#10. 5m, 復量 ,青灰色灰岩	重层序0.1m。 夹泥质灰岩,	钻孔中风	礼化层未揭穿	•							
小		3.	钻孔	孔内做	1段标	ままし し 世 い し せ い し せ い し む む む む む む む む む む む む む む む む む む	试验。	土作但网												
结		4,	HITL	石心空	地灰金	儿佃火	四周 承 四,	小旧休田。												
		4	-Hri	1.1.4.	7			收 合, 用兴	白子派 叶子卫		油油曲	团, 占去法			-	坊坊	,良龄			
		Ħ	101:	工木公司	ų	F	हा ८ ′	金疋:周祥、		。 71/10 盲	1%(がい利) 行上TTI、		तः मा	æ		议校	. <i>1</i> 510	4		

黄石经开区•铁山区地震安评岩土工程勘察HSZK20钻孔柱状图

钻	孔位置		黄石纲	研区・特	铁山区 N	: 30° 9	' 19.99"	E:115° 11′ 5.80″	孔口地面 高程	20	*	平均岩芯 采取率	强	%	弱	%	徽新	%	
钻	孔目的	1	査	明场址团	(各岩土)	层结构	特征及工程	地质特性	钻孔深度	22	*	风化层厚度	全 0	米强	7	*	弱 7	米 全强风(と厚 7米
钻	孔前		_	0 90	1	站机类	型	Y-150	覆盖层厚度	8	*	地下水位	<u>職定水位</u> 現期日期	17.8 201911	* 22	开线	孔日期	2019	1121 1121
地	孔	高	厚	柱	伏 图	岩土	凤化						标贯	測点	测点	剪切	4	台土层平均剪切	叨波速
层代	澯	程	度	2	及	层	山 井		地员	訂 描 述			放探	深	走	波		直方图(米/	秒)
号	(米)	(米)	(米)	钻孔	,结构	编号	ፓቹ						(击)	度 (米)	时 (毫秒)	速 米/秒	100	200 300 400	500 600
					X			杂填土:	:土黄、褐黄	色, 主要由粉	质黏土组	1成, 岩芯结		1	7.2	138.6			
01				X		1	覆	构松散,呈碎	快状。局部含	孫石, 砾石料	立径2 ^{~8c}	m, 成分为灰		2	7.2	139.4 140.5		140. 9	
	1						善	岩,呈棱角、	次棱角状。			-		4	7.0	142.7			
	5.00	15.00	5.00	A		1	_	粉质黏:	土: 棕黄色,耳		狀,硬~帀	丁塑状, 岩芯]	5	7.0	143.6	L L	-	
Q pal						2	层	切面稍滑,湿	腹湿,干强度	中等。局部行	含少量砾	石,粒径0.3	6.40~6.70	7	4.1	246, 2		244.6	
	8.00	12.00	3.00	14	44	1		~2cm, 主要成	认分为灰岩,呈	次圆~次棱角	状。			8	4.0	252, 7			-
					E		-107						1	9	2.2	448.5			
				Hi+			强	砂质灰岩	: 灰白色、青	青灰色, 取芯	呈碎块状	、散砂状,		п	2.2	458.6			
				Π.		3	风	其中散砂状主	三要分布孔深1	0.5~15m, 린	完全失去	长胶结。岩		12	2.2	462.5			460.9
				E	E		化	芯极破碎,裂	隙发育, 岩质转	交软。				13	2.1	467.8			
	15.00	5.00	7.00	HH I									4	15	2.1	470.2			
Slai,				Η		1								16	1.8	568.5			
Į.]				 				11. 1.1 June 1			18	1.7	580.1			
		l		臣日	臣	4	风	砂质灰岩	· 青灰色,岩	芯较破碎,取	芯呈短杠	t 状,断面可		19	1.7	582.5			579.5
				Ħ	Ħ	1	化	拼 尿石	石灰牧坚便,常	时 尸肥。				20	1.7	585.3 586.4			
	22.00	-2.00	7.00	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>		1													1
			Ļ			1													
ł																			
				1			l												
			Ł																
1														1					
				ļ.															
						ļ													
			ł																
		l.																	
				1				l											
\vdash	Τ		-														•		
铅	î	ĩ	*7		· {{}} {{}} {{}} {{}} {{}} {{}} {{}} {{	** 工	省区。胡	山区结开 效可	孔 深99m 覇主	已闻 gm									
州		2	平1	大基岩外	15000	的东高	家边组下	段砂质灰岩,钻	孔揭穿强风化	层7m,中风作	七层未揭	穿。							
小		3.	钻	北内伯	如2段标	准贯)	(试验。 试照梅F	卡作星窗											
结		4	FE 1		工地灰金	エルゴ田	之而逐加	,小叶环田。											
L		E1	÷tn.	++^=				收宁,国兴	中立法 欧人士	7	御加如	团、中立海				枋坊	• 房抽屋	1	
		Ħ	101:	工个公司	u			金儿: 周干、	「ス内、防亚人		吸加则	M. 1.74				XXX		•	

图 6.3-21 钻孔 HSZK20 剪切波测试成果图

黄石经开区•铁山区地震安评岩土工程勘察HSZK21钻孔柱状图

钻	化位置	黄	Б经开	区・铁山	X N:3	0° 13′	46.89″ E	8:114° 51′ 45.39″	孔口地面 高程	33	*	平均岩芯 米取率	强	%	弱	%	徽新	%	
钻	化目的		査	明场址区	各岩土	县结构	特征及工程	呈地质特性	钻孔深度	24	*	风化层厚度	全 0	米强	0	*	弱 14.	7米 全强风化厚	0米
钻	乱前			0 90	1	站机类	۳U	Y-150	覆盖层厚度	9.3	*	地下水位	<u>建定水位</u> 夏潤日期	31.6 201911	* 20	开鉄	孔日期	20191119 20191119	
地		高	厚	柱状	图	岩土	园化						标贯	测点	测点	剪切	7	自土层平均剪切波过	il.
层代	深	程	度	及		层	公惠		地质	质 描 述			放採	深	走	波		直方图(米/秒)	
号	(米)	(米)	(米)	钻孔纸	结构	编号	7/17						(击)	度 (米)	时 (毫秒)	速 米/秒	100	200 300 400 500	0 600
QI				\mathbf{X}	$\langle X \rangle$	1		杂填土:	成分以粉质黍	出土为主,杂色	,呈可勤	退状,孔隙大,		1	7.2	139.2		140. 2	
	2.10	30, 90	2.10	₩	6	\vdash	覆	稍湿,于强度	中等。含少量	低石,碎石制	在2~5c	m,成分为灰	1	3	4.4	226.5	Ľ		
o Mil				· . o 0				一一一一	差, 呈稜角 ()	《夜用状。				4	4.2	238.1			
Q						2	畫	含卵砾	中砂:棕黄色,	松散~稍密状,	湿~很渴	晶,中砂粒径		5	4.0	251.6 262.4		248.4	
	7.00	26.00	4, 90		. 0		层	0.6 ⁻¹ mm,成	这分为石英、岩 士可计4-= 由	音屑等。 局部 公	含卵体化	1,粒谷一般	7.50~7.80	7	3.7	268.5		ļ	
Q edl	0 00	00 70	0.00	11		3	2000	0.5 2cm, 取) 次圆状。	人可达40回,成	TAKANT	石,居世	财产于,王	13	8	5.5 5.5	244. 4 248. 2		246. 3	
⊢	9.30	23. 10	2. 30	鬥	Ε÷			NE#	上古尔在日	1 1 期175 36%	- भारत क	编 工程度	-	10	1.6	615. 3			
								↓ 切灰新- 中等。局部:	上: 火紅巴, 3 含心量砾石.	E可至八,相也 粒径0.5~1cm	最大可	时间,于强度 达3cm. 成分		11 12	1.6	620.4 622.3			
				日日	╞╦╤╜		中	\为灰岩, 磨圆	度较差,呈棱	角状。				13	1.6	624.5			
													1	14 15	1.6	625.8 626.7			
				╞ ┷╤╠										16	1.6	627.4			
T ₂ j						4	风							17 18	1.6 1.6	629.1 630.5			628.7
								白云质灰	岩:灰白色,取	芯呈短柱状,	少量长枝	主状, 岩质		19	1.6	632, 6			
							化	坚硬,锤击声跳	前,有明显的回	弹。				20	1.6 1.6	633.4 635.2			
														22	1.6	636.8			
	24 00	0.00	14 7											23	1.6	638. 0			1
	21.00	5.00		1									1						
			ļ																
1																			
				l															
	ļ																		
						ļ													
Ł			1																
		l																	
				t i				ļ											
			Į.			1													
1		ļ																	
L	L								_										_
斜																			
A		1,	本子	L为黄石	经济技	术开	发区・铁	山区钻孔,终孔孔	化深24m,覆盖	层厚9.3m。 巨士爆穿									
1		3	い和	、墨石入	1段标	相贯入	试验。		, 9036 T MYC	本小詞才 。									
经		4,	钻孔	L 岩芯经	地质鉴	定描述	述照像后	,禾作保留。											
		缶	机:	土木公司			_	鉴定:周洋、	宁文涛、陈金龙	2	徹机制	图:宁文涛		_		校核	: 房艳国		

黄石经开区•铁山区地震安评岩土工程勘察HSZK22钻孔柱状图

钻孔	位置	黄石纲	经开区	・铁山区	<u>(</u> N: 30°	14' 1	9.65" E:	114° 51′ 16.22″	孔口並面 高程	34	米	平均岩芯 采取率	强	%	弱	%	徽新	%	
钻孔	【目的	查明	围场址	区各岩土	:层结构	寺征及	工程地质物	· · · · · · · · · · · · · · · · · · ·	钻孔深度	19	*	风化层厚度	全 0	米强	4.1	*	弱 5.	5 米 全强风	化厚 4.1米
钻	孔病			0 90	1	胡类	型	Y-150	覆盖层厚度	9.4	*	地下水位	<u>教会水位</u> 观测日期	33, 24 201911	来 23	开奏	孔日期	20 20	191121 191122
地	孔	高	厚	柱礼	犬图	岩土	凤化						标贯	測点	测点	剪切	ļ	岩土层平均剪	切波速
层代	深	程	度	2		层	ム港		地员	贡 描 述			放探	深	走	波		直方图 (米	/秒)
뮥	(米)	(米)	(米)	钻孔	结构	编号	μ (C						(击)	度 (米)	町 (毫秒	速 米/秒	100	200 300 400	500 600 700
05						ī		杂填土	:主要由含砾砂	少土组成,杂色	9,取芯量	是柱状,中密		1	7.0	142.6		150.4	
*4	2.70	31. 30	2.70			÷.	覆	状,孔隙大,	含少量砾石,碎	华石粒径3 ^{~5ci}	n, 分选期	医圆差,呈棱		3	6.2	149.3 160.4		_	
	4.30	29.70	1.60	11	11	2-1		角"次棱角状	<i>t</i> .					4	4,5	224.7		227.5	
					. 00		盖	粉质黏:	土:棕黄色,取	芯多为长柱制	代,可塑妆	代,岩芯切面	5.20~5.50 11	5	4.2	240.4			
Q ₄					. 0	2-2		▲ 稍滑,湿度湿	1,干强度中等	。局部含少量	砾石, 料	立径0.3 [~] 2cm,		7	4.0	250.6		251.1	
L			1		. 0		层	主要成分为	灰岩,呈次棱角	自状。				8	3.9	258.3			
	9.40	24.60	5.10			-		含砾中	砂:棕黄色,松	公散-稍密状,	稍湿,中	砂主要由石		10	3.8	263. 5 446. 4			1
				++++			强	英(70%)、岩	清屑(20%)、长	石(10%)组成	,粒径为	0.5~1.2mm,		11	2.2	449.3			451 7
				++++	9_+_+ +_+_	3	风化	\ 呈次國状; 卵	石含量5%,粒	径0.5 ² cm, 凤	幼主要	为花岗闪长		12	2.2	453.2 458.1			401. (
γδ	13.50	20.50	4.10				~	石, 磨则度甲	'寺, 主伙圆状	•			4	14	1.6	630.7			L
				+++++++++++++++++++++++++++++++++++++++	++++ ++++		中	人 花岗闪	长岩:灰白色,	取芯呈碎块物	代,岩芯车	交破碎,岩质		15	1.5	718.8			
			l	++++	++++	4	风	\ 较软, 锤击易	。碎,斜长石风	化强烈。				10	1.5	725.4			722. 8
ł				+++++++++++++++++++++++++++++++++++++++	++++		化	花岗闪	长岩:灰白色,	花岗结构, 块	状构造,	岩芯较完整,]	18	1.δ	726.5			
	19.00	15.00	5.50	11+11				以柱状为主,	,少量碎块状,	岩质新鲜,岩	质坚硬,	锤击声脆。							
													1						
							l												
			-																
1																			
				ļ															
							1						1						
			Ł																
1																			
							1						1						
	1																		
1						l													
l			1										1						
1																			
1																			
1								ļ											
	ί Γ													•	-	-	-		
日		1	太平	为带石	经济制	;术开	发区。纽	山区钻孔 终对之	化深19m 覆盖	层厚9.4m。									
州		2	下伊	基岩为	花岗闪	长岩	钻孔揭	穿强风化层4.1m,	中风化层未	揭穿。									
小		3.	钻孔	北内做	(1段标)	住贯入	试验。 沭阳俊 E	未作保留。											
结		T	9431	ur uni		. <u>ле</u> јщ	~2mm 欧/口	いたにを用。											
L		tel.	tn.	++~~				收宁, 国兴	中立法 姓人名	}	御扣朝	图 • 中立海				枋城	・房盤同	ส	
		Ħ	101:	工办公司	J		দ্ব ৫	金足:同伴、			_ 承小则 計 上□ 1	四, 1 2 47 2 中 2 回山 2 - 1 2	с к п	म		UR	, <i>11</i> 471519	•	

图 6.3-23 钻孔 HSZK22 剪切波测试成果图

黄石经开区•铁山区地震安评岩土工程勘察HSZK23钻孔柱状图

图 6.3-24 钻孔 HSZK23 剪切波测试成果图

长 江 三 峡 勘 测 研 究 院 有 限 公 司(武汉) 黄石经开区・铁山区地震安评岩土工程勘察HSZK24钻孔柱状图

钻孔	L位置		黄石绍	研区・特	铁山区 N	:30°8	′ 42.45″ I	3:115° 2′ 46.63″	孔口地面 高程	18	*	平均岩芯 采取率	强	6	弱	%	徽新	%	
钻孔	し目的		査	明场址区	【各岩土,	层结构	特征及工程	地质特性	钻孔深度	35	*	风化层厚度	全 5.5 ;	米强	6	*	弱 13	米 全强风化	L厚 11.5米
钻孔	L 新度			0 90	4	钻机类	型	Y-150	覆盖层厚度	10.5	*	地下水位	<u>推定水位</u> 重测日知	16.07 3	6	开餐	孔日期	20191 20191	125
地	孔	高	厚	柱礼	犬 图	岩土	风化						标贯	测点	测点	剪切	4	台土层平均剪切	初波速
伝	深	程	度	2	及	层	分费		地员	6 描 述			放探	深	走	波		直方图(米/	秒)
뮥	(米)	(米)	(米)	钻孔	结构	编号	יי גע						(击)	度(米)	町 (毫秒	速 米/秒	100	200 300 400	500 600
				\mathcal{X}				杂填土:3	主要由含砾砂	土组成,取芯	呈柱状,	中密状,孔	1	1	7.3	145.3			
Q ^T						1	覆	隙大,含少量和	砾石,碎石粒名	2 ^{3~5cm,} 分选	善圆差,	呈棱角~次		3	7.1	149.4		152.0	
				\mathbf{x}				棱角状。						4	7.1	155.8			
\vdash	5.20	12.80	5.20			_	盖						6. 10~6. 40	5	5.5 4.3	157.4 233.6		_	
				1	11		ľ l	粉质黏土	L:土黄色, 局音	部为灰白色,耳	x 芯长呈	柱状,刀切	12	7	4.2	240.4			
Q ^{edl} ₂₋₃						2	层	面稍滑, 岩芯	呈可塑状,湿质	度湿, 干强度口	中等。			8	4.1	245.7 253.4		245.5	
	10 50	7 50	5 90			1							9.50~9.80	10	3.9	255.6			
	10, 50	1. 50	5. 30						an and a second				10.50~10.60 50	11	3.3	302.4		5	
							全	含硼砂	岩: 紫红色,耶	X芯呈短柱状.	散砂り	t, 受风化作		13	2.8	357.4			
						3	风	用影响,石,	也已元王大太) 易教化 崩留	收珀, 无法辨; 8	別原石筑	5件,石心奴	1	14	2.8	360.1		35	3. 9
	16 00	2 00	5 50				化	19X1/T) '7X/JV/H		10				15	2.8	367.5			
	10.00	2.00	0.00		0			今面动山	- 影灯各 西	は好舟 雨せる	日短日	₩ 単 ***	1	17	2.3	442.3			1
							强	宗教 岩质校理	F: 系红巴、 # 軟 無击 古 W)	动岩主要成分	主应住	、 岩心 我 . 岩屑 呈		18	2.2	448.6			
						4	风	次棱角状,分	选磨圆一般, 制	论径大小在0.5	2~1cm.	· /1//3/ 11		20	2.2	453. 4			451.4
K-Edn ¹							化							21 22	2.2	455.1 457.3			
	22.00	23 L 2 635.2 24 L 3 635.2 25 L 9 635.2																	
		23 L3 03.2 																	
		・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・																	
			中 含砾砂岩:紫红色、砖红色,岩质较硬,不易摔断,锤击 26 1.8 541.5 中 含砾砂岩:紫红色、砖红色,岩质较硬,不易摔断,锤击 26 1.8 542.5 中 产噻,砾石成分主要为灰岩岩屑、石英,粒径0.5 [°] 2cm。 28 1.8 546.2																
			声哑,砾石成分主要为灰岩岩屑、石英,粒径0.5 [°] 2cm。 28 1.8 546.2 5<风																
			・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・																
		····································																	
							化							33	1.8	554.6			
														34	1.8	555.9			1
	35.00	-17.00	13.00			-							-	ļ					
				1															
													ļ						
						ļ													
1																			
														Ļ					
	Τ	_	-	I		1		L						-	-		L		
钻		1, 4	孔为	黄石绍	济技术	开发	区・铁山	区钻孔,终孔孔;	粲35m,覆盖层	厚10.5m。									
孔		2、7 3、4	伏基	岩为白	1至一古法 段标准	近系东	<調群下長 いい。	发繁红色含砾砂岩	岩,钻孔揭穿全	E风化层5.5m,	强风化	公层6m,中风行	化层未揭穿	•					
^小		4、名	孔岩	芯经地	质鉴定	描述	照像后, 未	卡作保留。											
结																			
_		钻	机:	土木公司	j			鉴定:周洋、	宁文涛、陈金龙		微机制	图:宁文涛	N	_	1	交核:	房艳国		
							图 6.	3-25 铅	钌孔 HSZ	ZK24 剪	可切?	波测试	成果	冬					

长 江 三 峡 勘 测 研 究 院 有 限 公 司(武汉) 黄石经开区・铁山区地震安评岩土工程勘察HSZK25钻孔柱状图

钻	化位置	1	黄石纲	を开区・領	铁山区 N	:30°8	21.43″I	2:115° 1′ 52.49″	孔口地面 高程	21	*	平均岩芯 采取率	强	%	弱	%	徽新	%		
钻	乱目的		査	明场址团	名岩土	层结构	特征及工程	建地质特性	钻孔深度	42. 2	*	风化层厚度	全 11.2	米强	14.2	*	弱 15.	6米 全强	风化厚	25.4米
钻	孔 <i>翻</i> 度			0 90	,	钻机类	型	Y-150	覆盖层厚度	1.2	*	地下水位	<u>量定水位</u> 观测日期	18.72 3	1	并终	孔日期		20191126 20191125	
地口	孔	高	厚	柱丬	伏 图	岩土	风化						标贯	測点	调点	剪切	ź	出层平均	剪切波速	L .
居代	深	程	度	2	及	层	分帯		地员	貢 描 述			触探	深	走时	波		直方图(米/秒)	
号	(米)	(米)	(米)	铂扎	. 结构	编号	~ *						(击)	皮(米)	 (毫秒	迷 米/秒	100	200 300	400 500	600
Q4	1.20	19.80	1.20	XX		1	覆盖层	杂填土:	其中,孔深0	~0.3m为人工	路基混為	餐土块;孔深		1 2	7.1	140.4 339.6	L	140.4	1	
								○ 0. 2 [~] 1. 2m为,	人工回填块石	夹含砾砂土,	央石粒径	圣一般为2 ^{~5}		3	2.9	342.6				
						2	全	Cm, 成分为外	(石,笘僦伊工)	呈更悔巴, 结	匈伦取个	N 成形。	4	4	2.9	345.1				
														6	2.9	350.2				1
			1			2	凤	6 77 74 11	the side from the The		#Lask JD	51 17 11.14		7	2.8	354.2			354.6	
					0			含体砂石 田影响 当な	h: 紫红色, 耿 大口宫今生土B	心呈短在状、	散砂次 ↓ 面 学 4	, 受风化作		9	2.8	358.1				
							化	破碎,吸水后	易软化、崩解	2 501, <i>J</i> LIA7/17	加尔石和	11-9, 10 10-102		10	2.8	360.7				
										-				12	2.7	365.3				
	12.40	8.60	11.20										-	13	2.3	433. 4				
					0	2.1								14	2.2	445.7 446.8				
							-10							16	2.2	447.5				
							强							17	2.2	448.3 449.5				
					-0	2		今 町764	4.此作品 对	好舟 当乐林	协 标十	古町 四十		19	2.2	450, 7				
						3	风	后易数化。 1	百、系红巴、低 前艇。砂砾主	·红色,石灰权 要成分为石革	秋, 裡 出 、 岩 層	「严型,吸小 . 呈次棱角		20	2.2	452.0 453.2			453	3.9
							Į.	状,分选磨圆	一般,粒径大	小在0.2 [~] 1cm。	• • • • • • • • •	LUCK		22	2.2	455.2				
K-Edn'	1													23	2.2	457.3				
					ө		1K							25	2.2	460.1				
														26	2.3	462, 3				
	26.60	-5.60	14.20	0									-	27	1.9	535, 7				٦ I
														29	1.9	536.4				
				0	0									30	1.8	537.9 539.2				
							中							32	1.9	540. 5				
								今瓜孙毕	- 影灯角 硅4	r 缶 - 単式 宗東	女 当后:	动収福 不		33 34	1.8	542.7 543.6				
								易捧断,锤击	声哑,砾石成	计主要为灰岩	告,石灰, 岩屑、7	石英,粒径		35	1.8	544.2				542.8
						4		0.5~2cm.						36	1.8	546.7 545.2				
	1					•								38	1.8	548.1				
						9 •	ek.							39 40	1.8	551.6 552.3				
					0	· a ·								41	1.8	553, 7				
				9																
\vdash	42.20	-21, 20	15.6	0		-							-							
							l	ļ												
⊢	Ļ					L														
钻																				
孔		1、7	北沙	b黄石约	A济技力	计 开发	区·铁山 編 選 下	区钻孔,终孔孔;	深35m,覆盖层。 岩、钻孔爆穿在	厚10.5m。 和化厚11 9r	,强风	化层14 2m-	中风化层	未揭穷	f.,					
小		3、有	胡湯	出达经地	质鉴定	E描述	照像后,	未作保留。	ы <i>у</i> марыма <i>р</i> і Д			, 0/2 - 1 Dul)								
结																				
		牟	机	土木公司	1			鉴定:周洋.	宁文涛、陈金が		微机制	图:宁文海	-		ţ	交核·	房艳国			
		PH					图 6.	3-26 钆	5孔 HSZ	ZK25 舅	剪切	波测试	成果	冬	1					

6.4 典型土动力学实验分析

本次试验为黄石经济技术开发区·铁山区目标区地震安全性评价工作 提供场地土样动力性能参数。根据要求测定土样的动应力、动应变,通过 计算得到动剪切模量比、阻尼比随剪应变的变化规律,给出八个典型剪应 变对应的剪切模量比与阻尼比。

试验是在长江科学院土动力实验室的英国GDS微机控制电液伺服动态 土工三轴测试系统上完成(见图6.4-1),系统参数见表6.4-1。

图 6.4-1 5Hz/40kN GDS 动态土工三轴测试系统

表 6.4-1	系统参	数	
技术指标	参量	技术指标	参量
试样几何尺寸	\$\$\phi 39.1 \times 80mm/\$\$\$ 61.8 \times 125mm/\$\$\$\$ 101 \times 200mm(直径 \times \$\$\$)\$	体变传感器最大体积变化	200M
竖向频率	0.01 ~ 5Hz	体变精度及分辨率	0.1% / 0.04M
轴向静/动荷载	0 ~ 40kN	垂直位移传感器量程	± 50mm
周围压力	0 ~ 1700kPa	垂直位移精度及分辨率	0.07% / 0.208µm

本次试验共完成 2 组土样动力性能的参数测试工作,详细土质分类及 编号见表 6.4-2。

各试样在八个典型剪应变时的剪切模量比与阻尼比列于表 6.4-3: 各试 样的 $G_d/G_{dmax} \sim \gamma_d$ 和 $\lambda \sim \gamma_d$ 的关系曲线见图 6.4-2。 表 6 4-2

	÷•• =							
					天然状态	物理性指标		
序号	土样编号	深度(米)	含水率	比重	湿密度	干密度	孔隙比	饱和度
			W	Gs	ρ	ρ _d	e	Sr
			%		g/cm ³	g/cm ³		%
1	HSZK06-1	3.6-3.8	30.5	2.72	1.92	1.47	0.848	97.8
2	HSZK15-1	4.2-4.4	19.9	2.70	2.09	1.75	0.546	98.4
+			14-1-4-1-				•	

十的物性试验成果

表 6.4-3 土样动剪切模量比和阻尼比 γ_d 围压 参数 试样 Kc /kPa 5×10-6 1×10-5 5×10-5 1×10⁻⁴ 5×10⁻⁴ 1×10⁻³ 5×10-3 1×10⁻² G_d/G_{dma} 0.990 0.951 0.990 0.907 0.660 0.492 0.162 0.088 HSZK06-1 1.0 50 λ 0.001 0.004 0.008 0.037 0.064 0.160 0.197 0.001 G_d/G_{dma} 0.990 0.954 0.912 0.675 0.510 0.172 0.094 0.990 HSZK15-1 1.0 80 0.001 0.005 0.010 0.044 0.076 0.177 0.213 0.001 λ

6.4-2 土样剪切模量比和阻尼比随剪应变变化曲线

6.5 目标区工程地质单元划分

分析搜集的 1:20 万蕲春幅地质图及报告、1:10 万鄂东地区地质图,运 用野外地质调查和场地勘察成果,结合目标区卫星影像特征,重点考虑可 能对地震动的影响效应,将目标区划分为基岩区和覆盖区 2 种工程地质单 元。

1)章山地块(①):本地块内铁铺脑、油铺垅等部分原来为垄岗地貌 的区域现已开挖至弱风化基岩(图 6.5-1),岩性主要为砂质灰岩、白云质灰 岩和灰岩,根据附近钻孔剪切波测试结果,弱风化的砂质灰岩、白云质灰 岩和灰岩的剪切波波速均大于 500m/s,因此本地块内将铁铺脑、油铺垅等 原来地形等高线在 45m 以上的区域划分为基岩区,其余区域依据场地勘察 结果划分为覆盖层区(图 6.5-9)。本地块工程地质剖面见图 6.5-2,覆盖层 顶部的土层主要由杂填土、含砾粉质黏土、含卵砾石中砂组成,基岩为白 云质灰岩和砂质灰岩组成。地块覆盖层厚度变化见图 6.5-3。

图 6.5-1 章山铁铺脑附近施工场地开挖的弱风化基岩

 第四系人工堆积层; 2. 第四系残坡积; 3. 中 - 上寒武统; 4. 杂填土; 5. 含砾粉质黏土; 6. 白云质 灰岩; 7. 岩性界线; 8. 地层界线

2) 汪仁地块(②)

本地块位于黄金山向大冶湖逐渐过渡的缓坡地带,地块北侧靠近黄金 山脚区域徐斌村、四连山村、蔡家山、田家湾、乔家、青林湾、新农村陈 思滂水库一带由原来的垄岗地貌现已开挖至弱风化基岩,现场实地调查开 挖出露的基岩主要为下志留统高家边组泥质粉砂岩、粉砂质泥岩等(图 6.5-4)。根据附近钻孔剪切波测试结果,弱风化泥质粉砂岩、粉砂质泥岩的 等效剪切波波速为 527m/s,大于 500m/s。 根据实际调查弱风化岩体分布区域划分为基岩区,其余部位根据钻探 结果划分为覆盖层区(图 6.5-9)。本地块工程地质剖面见图 6.5-5,覆盖层 顶部的土层主要由杂填土、素填土、粉质黏土夹砂卵砾石、含砾中砂等组 成,基岩主要为含砾砂岩、粉砂质泥岩、砂质灰岩、灰岩、泥质灰岩、白 云质灰岩、白云岩等。场地覆盖层厚度等值线图见图 6.5-6。

图 6.5-4 汪仁镇乔家附近开挖的弱风化基岩

图 6.5-5 汪仁地块(②) ||-||'工程地质剖面

1.第四系人工堆积层; 2.第四系冲洪积层; 3.白垩系 - 古近系东湖群一段; 4.下志留统高家边组一段; 5.杂填土; 6.粉质黏土; 7.含砾砂岩; 8.泥质粉砂岩; 9.粉砂质泥岩; 10.岩性界线; 11.地层界线; 12. 角度不整合界线; 13.全风化/强风化; 14.强风化/弱风化

3) 四棵地块(③)

本地块地势为由北向南逐渐降低的缓坡,目标区自北向南长约 2.3km, 坡度约 8.7‰。依据现场勘察结果,将本地块划分为覆盖层区(图 6.5-9)。 场地覆盖层厚度等值线图见图 6.5-7。本地块工程地质剖面见图 6.5-8。覆盖 层顶部的土层主要由杂填土、素填土、粉质黏土夹卵砾石、含砾中砂、粉 质黏土等构成,基岩主要为泥质粉砂岩和含砾砂岩。

图 6.5-8 四棵地块(③) |-|'工程地质剖面

1. 第四系人工堆积层; 2. 第四系冲洪积层; 3. 白垩系 - 古近系东湖群一段; 4. 下志留统高家边组一段; 5. 杂填土; 6. 粉质黏土; 7. 含砾砂岩; 8. 泥质粉砂岩; 9. 岩性界线; 10. 地层界线; 11. 角度不

4)铁山地块(④)

本地块目前已经场坪,地势平缓。根据场地勘察结果将本地块划分覆盖层区。场地覆盖层厚度等值线图见图 6.5-10。覆盖层顶部的土层主要由素填土、粉质黏土以及砂卵石土组成,基岩主要为白云质灰岩和花岗闪长岩。 地块工程地质剖面见图 6.5-11

图 6.4-11 铁山地块(④) Ⅳ-Ⅳ'工程地质剖面

 ^{1.}第四系人工堆积层; 2.第四系冲洪积层; 3.中三叠统嘉陵江组; 4.花岗闪长岩; 5.杂填土;
 6.粉质黏土; 7.白云质灰岩; 8.花岗闪长岩; 9.地层界线; 10.岩性界线

6.6 场地类别

6.6.1 分析依据

依据《建筑抗震设计规范》(GB50011-2010),建筑场地覆盖层厚度的 确定,应符合下列要求:

1) 一般情况下,应按地面至剪切波速大于 500m/s 且其下卧各层岩土 的剪切波速均不小于 500m/s 的土层顶面的距离确定。

2)当地面 5m 以下存在剪切波速大于其上部各土层剪切波速 2.5 倍的 土层,且该层及其下卧各层岩土的剪切波速均不小于 400m/s 时,可按地面 至该土层顶面的距离确定。

3) 剪切波速大于 500m/s 的孤石、透镜体, 应视同周围土层。

4) 土层中的火山岩硬夹层, 应视为刚体, 其厚度应从覆盖土层中扣除。

场地土类型划分和剪切波范围应符合表 6.6-1 规定。

表 6.6-1

场地土类型	岩土名称和形状	剪切波 Vs 速度范围 (m/s)
岩石	坚硬、较硬且完整的岩石	$V_{S} > 800$
坚硬土或软质岩 石	破碎和较破碎的岩石或软和较软的岩石,密实的碎 石土	$800 \ge V_S > 500$
中硬土	中密、稍密碎石类土,密实、中密砾、粗、中砂, fak>150kPa的粘性土、粉土和坚硬黄土)	$250 < Vs \le 500$
中软土	稍密砾、粗、中砂,除松散的粉细砂,fak≤150kPa 的粘性土和粉土,fak>130kPa的填土	150 < Vs≤250
软弱土	淤泥和淤泥质土,松散的砂,新近沉积的粘性土、 粉土和流塑状黄土,fak≤130kPa的填土,流塑黄土	Vs≤150

(注: fak为由载荷试验等方法得到的地基承载力特征值, Vs为岩土剪切波速)

建筑的场地类别应根据土层等效剪切波速和场地覆盖层厚度按下表划 分(如表 6.6-2 所示),当有可靠的剪切波速和覆盖层厚度且其值处于表中 所列场地类别的分界线附近时应允许按插值方法确定地震作用计算所用的 设计特征周期。

1C 0.0 <i>L</i>		初起入州村州农							
岩石的剪切波速或土		场地类别							
的等效剪切波速 (m/s)	I ₀	I ₀ I ₁ II III IV							
Vs > 800	0								
$800 > V_S > 500$		0							
500≥Vse > 250		< 5	≥5						
250≥Vse > 150		< 3	3 ~ 50	> 50					
Vse≤150		< 3	3 ~ 15	15 ~ 80	> 80				

场地举别划分表

注: 表中 Vs 系岩石的剪切波速。

表 6 6-2

基岩区弱风化岩石的剪切波波速 500~800m/s 之间,根据表 6.6-2 中场 地类别划分的条件,以此可确定基岩区的场地类别。覆盖层区覆盖层厚度 按地面至剪切波速大于 500m/s 的土层顶面的距离确定。根据钻孔剪切波速 测试数据计算,可确定钻孔等效剪切波速、覆盖层厚度,进而确定场地类 别。

6.6.2 分析成果

根据测试成果,测试孔等效剪切波速及覆盖层厚度见表 6.6-3。

表 6.6-3

测试孔等效剪切波速及覆盖层厚度表

孔号	等效剪切波速 Vse(m/s)	覆盖层厚度(m)	场地类别
HSZK1	244.4	9.0	II
HSZK2	244.4	5.0	II
HSZK3	316.4	16.0	II
HSZK4	199.9	6.7	II
HSZK5	301.6	17.7	II
HSZK6	222.3	10.1	II
HSZK7	323.0	7.0	II
HSZK8	331.4	12.0	II
HSZK9	256.5	13.4	II
HSZK10	251.3	11.8	II
HSZK11	245.3	9.7	II
HSZK12	289.2	11.6	II
HSZK13	330.5	23.0	II
HSZK14	304.5	19.5	II
HSZK15	270.7	22.6	II
HSZK16	280.1	7.0	II
HSZK17	230.8	8.0	II
HSZK18	190.1	22.0	II
HSZK19	156.3	26.6	II
HSZK20	238.4	15.0	II
HSZK21	218.9	6.1	II
HSZK22	244.6	5.0	II
HSZK23	177.2	9.3	II
HSZK24	252.0	13.5	II
HSZK25	355.8	9.8	II

通过表 6.6-3 可知,目标区覆盖层区覆盖层厚度在 5.0~26.6m 之间,等效剪切波速在 156.3~355.8m/s 之间,根据《建筑抗震设计规范》 (GB50011-2010)规定的场地类别划分标准,综合判定目标区覆盖层区场 地类别为II类。

基岩区主要分布于章山地块(①)和汪仁地块(②),其场地内出露弱风化岩石,参考其周边钻孔揭露相同岩性岩石的剪切波波速,根据表 6.6-2 中场地类别划分的条件,可确定基岩区的场地类别为I₁类。

6.7 小结

通过对该工程场地的勘测,有如下结论:

 1)经济开发区黄金山工业园区位于黄金山南侧,处于黄金山向大冶湖 过渡的缓坡地形。其中章山地块(①)主要为第四系堆积平地,在油铺垄 和铁铺脑一带为垄岗地貌,目前场地已场坪;汪仁地块(②)和四棵地块 (③)主要为黄金山向大冶湖过渡的缓坡地带,坡度约8.7‰,靠近黄金山 一侧分布有剥蚀垄岗地貌,目标区所在的大广高速连接线道路以南区域目 前均已场坪。铁山西部工业新城处在东方山南侧,该目标区现已完成拆迁 和场坪,地势平坦。

2)场地表层为第四系人工堆积层(Q4^r),下为第四系全新统残坡积层(Q4^{del})、第四系全新统冲洪积层(Q4^{pal})和第四系上更新统残坡积层(Q23^{del}), 经开区下伏基岩主要为白垩系 - 古近系东湖群下段含砾砂岩、泥质粉砂岩, 下志留统高家边组下段砂质灰岩、泥质灰岩,上奥陶统临湘组泥质灰岩、 下奥陶统大湾组灰岩、泥质灰岩,中 - 上寒武统灰白色白云岩、白云质灰 岩;铁山区下伏基岩主要为中三叠统嘉陵江组灰白色白云质灰岩夹青灰色 灰岩,花岗闪长岩。

3)目标区工程地质单元可划分为基岩区和覆盖区。基岩区分布于章山 地块(①)的油铺垄和铁铺脑以及汪仁地块(②)的四连山村、田家湾、 乔家、新农村陈思滂水库一线。除基岩区外,其余区域均为覆盖层区。

4)目标区中薄层覆盖区等效剪切波速在157.8~351.6m/s 之间,覆盖层 厚度在5.0~26.6m 之间,根据《建筑抗震设计规范》(GB50011-2010)规定 的场地类别划分标准,综合判定中薄层覆盖区场地类别为II类。基岩区主要 分布于章山地块(①)和汪仁地块(②),其场地内出露弱风化岩石,参考 其周边钻孔揭露相同岩性岩石的剪切波波速,根据《建筑抗震设计规范》 (GB50011-2010)规定的场地类别划分的条件,可确定基岩区的场地类别 为I₁类。

7 场地设计地震动参数

本章的目的是通过危险性分析得到的基岩地震动参数,作为基底地震 动输入,然后根据场地的工程地质勘探、场地土动力参数试验以及场地地 震工程地质条件勘测的结果,进行场地土层地震动力反应分析,得到地表 面及相关高程地震动的幅值、频谱和持时,给出与场地相关的地震动加速 度时程,供拟建工程建设抗震设计使用。

7.1 基岩人工合成地震动时程

以基岩加速度反应谱和峰值为目标,用数值模拟的方法合成输入地震 动时程,作为场地土层动力反应分析的地震动输入值。

目前,我国工程地震界常用的地震动合成方法有以下几个步骤:

1)用反应谱与功率谱的转换关系,将目标反应谱转换成相应的功率谱,
 转换关系为:

$$S(\omega) = \frac{\varepsilon}{\pi\omega} S_a^2(\omega) / \left\{ -\ln\left[-\frac{\pi}{\omega T}\ln(1-r)\right] \right\}$$

其中: $S(\omega)$ 为功率谱, $S_{a}(\omega)$ 为目标反应谱, T 为持续时间, ω 为频率, ε 为阻尼比, r 为反应超过反应谱值的概率。

2) 用三角级数迭加法, 生成零均值的平稳高斯过程:

$$X(t) = \sum_{i=0}^{n} A_i \cos(\omega_i t + \varphi_i)$$

其中: 初相位φi为[0-2π]均匀分布的随机变量。

3)将平稳时程乘以非平稳强度包络,得到非平稳的加速度时程:

 $a(t) = \psi(t)X(t)$

非平稳强度包络函数为如下形式:

$$\psi(t) = \begin{cases} (t/t_1)^2 & 0 < t \le t_1 \\ 1 & t_1 < t < t_2 \\ \exp[-c(t-t_2)]t_2 < t \le T \end{cases}$$

其中: t 为时间,单位秒(s); t₁为强度包络函数上升段截止时间,单位 秒(s); t₂为强度包络函数平稳段截止时间,单位秒(s); c: 强度包络函数下 降段系数; t_s=t₂-t₁为峰值的平稳段; T: 持续时间; t₁, t₂-t₁和 c 等由统计计 算得出。

根据地震危险性分析得到的基岩加速度峰值和反应谱,经光滑作为目标谱,结合适应本地区地震活动特征的非平稳强度包络函数,采用拟合基 岩反应谱的三角级数迭加法合成基岩地震动,作为场地地震动力反应分析 的输入地震动时程。

本项目的强度包络取上述所示形式。根据霍俊荣的研究结果,基岩场 地上,方程中的强度包络参数的衰减关系如下:

 $lgt_s = -2.268 + 0.3262M + 0.5815lg(R + 10.0) + \varepsilon$

 $\lg t_1 = -1.074 + 1.005 \lg(R + 10.0) + \varepsilon$

 $\lg C = 1.941 - 0.2817M - 0.567\lg(R + 10.0) + \varepsilon$

其中: t_s :峰值平稳段的持时,即 $t_2=t_1+t_s$;

M: 等效震级;

R: 等效震中距。

地震动持时参数的确定,采用地震危险性分析结果与地震动时程合成 过程中地震动能量匹配的原则,即以地震危险性分析所得等效震级与距离, 以及由地震动持时参数统计经验关系所得的地震动持时参数作为参考,在 地震动时程合成过程中,综合考虑地震动反应谱与强度包线之间的匹配情 况,调整地震动持时参数值,并加以最终确定。表 7.1-1 给出了综合评判场 地地震动包络函数参数。

表 7.1-1	京山经济技术开发区地震动包络函数的参数						
却批概率							
起起机干	t ₁ (s)	$t_2(s)$	с				
50年63%	2.5	9	0.14				
50年10%	2.5	11	0.13				
50年2%	2.5	13	0.12				
100年63%	2.5	10	0.14				
100年10%	2.5	12	0.13				
100年2%	2.5	14	0.12				
100年1%	2.5	15	0.11				

由上述方法和场地动力参数,按 50 年超越概率 63%、10%、2%以及 100 年超越概率 63%、10%、2%、1%各合成 10 条基岩地震动时程,分别对 应 10 个不同的随机相位,时程采样步长 0.02 秒,选择 60 个周期作为拟合 控制点。控制点的周期从 0.04 至 10 秒近似地按对数等间距分布,目标谱与 计算谱之间的相对误差小于 5%。以 HSZK17 为例,7 种不同超越概率的基 岩人工合成地震动时程见图 7.1-1。

图 7.1-1 黄石经济技术开发区·铁山区钻孔 HSZK17 人工合成基岩地震动时程

7.2 场地土层地震反应分析

7.2.1 场地地震反应分析模型及其参数的确定

根据目标区工程地质特征及土动力特性,建立相应的地震反应分析模型,采用一维波动方程的等效线性化分析方法计算各点地表地震峰值加速 度及反应谱,其基本原理如下:

一维波动理论方法假定土层是水平成层且近似于无限延伸,基底及土 层介质均为各向同性的线弹性体。假定剪切波从基岩垂直入射到 N 层水平 层粘弹性介质,因此,在每一层介质中必须满足波动方程:

$$\rho_i \frac{\partial^2 \mu_i(x,t)}{\partial t^2} = G_i \frac{\partial^2 \mu_i(x,t)}{\partial x^2} + \eta_i \frac{\partial^3 \mu_i(x,t)}{\partial x^2 \partial t}$$

式中: $\mu_i(x,t)$ 为第 i 层土的位移函数, ρ_i 为第 i 层土的密度, G_i 为第 i 层土的剪切模量, η_i 为第 i 层土的粘滞系数。

各土层之间界面上应满足位移连续条件和应力连续函数,而在地表(第 一层土的顶面)应满足零应力条件:

$$u_{i}(h_{i},t) = u_{i} + 1(0,t)$$

$$\tau_{i}(h_{i},t) = \tau_{i+1}(0,t)$$

$$\tau_{1}(0,t) = 0$$

计算时,先计算各土层相对于半空间垂直向上入射的传递函数,然后 分别乘以基岩入射波的付氏谱,得到各土层顶面的加速度付氏谱和各土层 中面的剪应变付氏谱,经付氏逆变换得相应的加速度时程和剪应变时程。

考虑到土的非线性特性,各土层的动剪切模量和滞回阻尼比都是剪应 变的函数。因此,先假定一初始剪切模量 G₀和阻尼比 Z₀,计算出相应的各 层土的剪切应变值,然后用最大剪应变值乘以折减系数(本项工作取 0.65) 作为等效剪应变,再由剪切模量曲线和阻尼比曲线查出相应的剪切模量 G' 和阻尼比 Z',并比较 G'、G₀和 Z'、Z₀。如果剪切模量和阻尼比的相对误差 都小于允许误差(本项工作取 5%),则认为土的应力应变关系得到满足, 否则,以新的剪切模量 G'和阻尼比 Z'作为初始值,重复上述计算过程,直 到相对误差都满足要求为止。

目标区土层剪切波速采用物探实测结果作为建模的依据,土层密度采 用经验数值。本场地砖红色粉质黏土、含砾粉质黏土采用实验结果,其余 土非线性参数类取《工程场地地震安全性评价工作规范(DB001-94)》相 关类似土类的结果,见表 7.2-1。并采用一维场地模型(一维等效线性化波动 法)计算土层地震动反应,分析计算程序采用国家地震局(1995)推荐"地 震安全性评价计算程序包(ESE)"。

					-					
土类	山山	长松				剪切应变	ξYd			
编号	石住	今致	5.00E-06	1.00E-05	5.00E-05	1.00E-04	5.00E-04	1.00E-03	0.005	0.01
1	ノエノエは上	Gd/Gmax	0.96	0.95	0.8	0.7	0.3	0.2	0.15	0.1
1	八二八二供二	λd	0.025	0.028	0.03	0.035	0.08	0.1	0.11	0.12
2	粉质黏土	Gd/Gmax	0.995	0.99	0.951	0.907	0.66	0.492	0.162	0.088
2	(砖红色)	λd	0	0.001	0.004	0.008	0.037	0.064	0.16	0.197
2	含砾粉质黏土	Gd/Gmax	0.995	0.99	0.954	0.912	0.675	0.51	0.172	0.094
3	(黄褐色)	λd	0.001	0.001	0.005	0.01	0.044	0.076	0.177	0.213
4		Gd/Gmax	0.9938	0.9878	0.9417	0.8899	0.6196	0.4501	0.1419	0.0767
4	中型	λd	0.0097	0.0134	0.0284	0.0389	0.0729	0.0882	0.1111	0.1154
5	粉质黏土	Gd/Gmax	0.992	0.984	0.926	0.862	0.556	0.385	0.111	0.059
3	(深褐色)	λd	0.025	0.031	0.051	0.063	0.103	0.127	0.208	0.257
(人供可儿	Gd/Gmax	0.99	0.97	0.9	0.85	0.7	0.55	0.32	0.2
6	生阳风化	λd	0.004	0.006	0.019	0.03	0.075	0.09	0.11	0.12
7	甘止	Gd/Gmax	1	1	1	1	1	1	1	1
7	本 石	λd	0	0	0	0	0	0	0	0

表 7.2-1 场地土 G/Gmax - γ和λ-γ的推荐值

由以上模型可知,进行场地土层地震反应分析,需要土层剖面的分层 厚度,同时需要土层中土体的力学特性资料,包括土体剪切波速值、密度 值和土体动力非线性特性参数值。本项目地震工程地质条件勘察工作在目 标区共布设了25个工程地质钻孔,根据钻孔柱状图揭示的地层显示,25个 钻孔均为II类场地(见第6章)。根据现场取得的资料包括土层的分层厚度、 土体性状描述和土体剪切波速等。建立了25个钻孔的场地土层地震反应一 维计算模型,见表 7.2-2 至表 7.2-26。 依据钻孔资料和剪切波速测试结果,确定目标区地震输入界面。本工程采用剪切波速值大于 500m/s 的土层顶面作为计算输入界面。

表 7.2-2 黄石经济技术开发区·铁山区 ZK01 钻孔场地土层力学模型资料

层号	土类编号	土类型	层厚(m)	Vs(m/s)	密度(g/cm ³)
1	1	人工填土	1	138.3	1.85
2	1	人工填土	1	140.5	1.85
3	1	人工填土	1	142.2	1.85
4	3	含砾粉质黏土	1	280	1.92
5	3	含砾粉质黏土	1	310.9	1.92
6	6	强风化白云岩	1	466.9	2.1
7	6	强风化白云岩	1	472.9	2.1
8	6	强风化白云岩	1	446.4	2.1
9	6	强风化白云岩	1	462.3	2.1
10	7	中风化白云岩		566.3	2.2

表 7.2-3 黄石经济技术开发区·铁山区 ZK02 钻孔场地土层力学模型资料

层号	土类编号	土类型	层厚(m)	Vs(m/s)	密度 (g/cm ³)
1	1	人工填土	1	145.3	1.85
2	3	含砾粉质黏土	1	240.1	1.94
3	3	含砾粉质黏土	1	272.3	1.94
4	3	含砾粉质黏土	1	290.4	1.94
5	3	含砾粉质黏土	1	310.9	1.94
6	3	含砾粉质黏土	1	315.2	1.94
7	7	中风化白云岩		512.5	2.2

表 7.2-4 黄石经济技术开发区·铁山区 ZK03 钻孔场地土层力学模型资料

层号	土类编号	土类型	层厚(m)	Vs(m/s)	密度(g/cm ³)
1	1	人工填土	1	136.2	1.85
2	1	人工填土	1	152.6	1.85
3	3	含砾粉质黏土	1	243.5	1.94
4	3	含砾粉质黏土	1	252.4	1.94
5	4	中砂	1	330.9	1.96
6	4	中砂	1	356.9	1.96
7	4	中砂	1	373.9	1.96
8	6	强风化泥质灰岩	1	432.4	2.1
9	6	强风化泥质灰岩	1	435.3	2.1
10	6	强风化泥质灰岩	1	441	2.1
11	6	强风化泥质灰岩	1	445.5	2.1
12	6	强风化泥质灰岩	1	448.2	2.1
13	6	强风化泥质灰岩	1	450.5	2.1
14	6	强风化泥质灰岩	1	455.6	2.1
15	6	强风化泥质灰岩	1	458.4	2.1
16	6	强风化泥质灰岩	1	462.2	2.1
17	7	中风化泥质灰岩		554.7	2.2

层号	土类编号	土类型	层厚(m)	Vs(m/s)	密度 (g/cm ³)
1	1	人工填土	1	146.1	1.85
2	1	人工填土	1	151.4	1.85
3	1	人工填土	1	158.4	1.85
4	3	含砾粉质黏土	1	241.6	1.94
5	3	含砾粉质黏土	1	252.2	1.94
6	6	强风化灰岩	1	466.9	2.1
7	7	中风化灰岩		533.2	2.2

表 7.2-5 黄石经济技术开发区·铁山区 ZK04 钻孔场地土层力学模型资料

表 7.2-6 黄石经济技术开发区·铁山区 ZK05 钻孔场地土层力学模型资料

层号	土类编号	土类型	层厚(m)	Vs(m/s)	密度 (g/cm ³)
1	1	人工填土	1	138.5	1.85
2	1	人工填土	1	140.3	1.85
3	1	人工填土	1	142.6	1.85
4	4	中砂	1	254.1	1.94
5	4	中砂	1	328.9	1.94
6	4	中砂	1	336.5	1.94
7	6	强风化粉砂质泥岩	1	425.5	2.1
8	6	强风化粉砂质泥岩	1	428.1	2.1
9	6	强风化粉砂质泥岩	1	430.3	2.1
10	6	强风化粉砂质泥岩	1	434.2	2.1
11	6	强风化粉砂质泥岩	1	439.7	2.1
12	6	强风化粉砂质泥岩	1	440.4	2.1
13	6	强风化粉砂质泥岩	1	441.9	2.1
14	6	强风化粉砂质泥岩	1	443.7	2.1
15	6	强风化粉砂质泥岩	1	445.4	2.1
16	6	强风化粉砂质泥岩	1	448.2	2.1
17	6	强风化粉砂质泥岩	1	452.5	2.1
18	7	中风化灰岩		522.3	2.2

表 7.2-7 黄石经济技术开发区·铁山区 ZK06 钻孔场地土层力学模型资料

层号	土类编号	土类型	层厚(m)	Vs(m/s)	密度 (g/cm ³)
1	1	人工填土	1	137.5	1.85
2	1	人工填土	1	141.5	1.85
3	1	人工填土	1	143.2	1.85
4	1	人工填土	1	130.4	1.85
5	5	深褐色粉质黏土	1	233.4	1.9
6	6	强风化粉砂质泥岩	1	416.9	2.1
7	6	强风化粉砂质泥岩	1	422.9	2.1
8	6	强风化粉砂质泥岩	1	426.4	2.1
9	6	强风化粉砂质泥岩	1	432.3	2.1
10	6	强风化粉砂质泥岩	1	437	2.1
11	7	中风化粉砂质泥岩		512.5	2.2

层号	土类编号	土类型	层厚(m)	Vs(m/s)	密度 (g/cm ³)
1	1	人工填土	1	143.9	1.85
2	2	砖红色粉质黏土	1	260.4	1.92
3	6	强风化砂质灰岩	1	452.3	2.1
4	6	强风化砂质灰岩	1	456.4	2.1
5	6	强风化砂质灰岩	1	460.9	2.1
6	6	强风化砂质灰岩	1	462.2	2.1
7	6	强风化砂质灰岩	1	465.5	2.1
8	7	中风化砂质灰岩		510.4	2.2

表 7.2-8 黄石经济技术开发区·铁山区 ZK07 钻孔场地土层力学模型资料

表 7.2-9 黄石经济技术开发区·铁山区 ZK08 钻孔场地土层力学模型资料

层号	土类编号	土类型	层厚(m)	Vs(m/s)	密度(g/cm ³)
1	1	人工填土	1	143.4	1.85
2	2	砖红色粉质黏土	1	231.2	1.92
3	2	砖红色粉质黏土	1	243.5	1.92
4	6	全风化砂岩	1	345.8	1.98
5	6	强风化砂岩	1	402.6	2.1
6	6	强风化砂岩	1	446.9	2.1
7	6	强风化砂岩	1	448.9	2.1
8	6	强风化砂岩	1	452.4	2.1
9	6	强风化砂岩	1	453.3	2.1
10	6	强风化砂岩	1	456.3	2.1
11	6	强风化砂岩	1	458.5	2.1
12	6	强风化砂岩	1	459.2	2.1
13	7	中风化砂岩		511.5	2.2

表 7.2-10 黄石经济技术开发区·铁山区 ZK09 钻孔场地土层力学模型资料

· · · · · · · · · · · · · · · · · · ·					
层号	土类编号	土类型	层厚(m)	Vs(m/s)	密度 (g/cm ³)
1	1	人工填土	1	137.5	1.85
2	1	人工填土	1	140.6	1.85
3	1	人工填土	1	143.2	1.85
4	5	深褐色粉质黏土	1	223.6	1.9
5	5	深褐色粉质黏土	1	228.1	1.9
6	5	深褐色粉质黏土	1	232.6	1.9
7	6	强风化砂岩	1	425.2	2.1
8	6	强风化砂岩	1	428.4	2.1
9	6	强风化砂岩	1	431.3	2.1
10	6	强风化砂岩	1	434	2.1
11	6	强风化砂岩	1	436.5	2.1
12	6	强风化砂岩	1	438.2	2.1
13	6	强风化砂岩	1	439.5	2.1
14	7	中风化砂岩		510.4	2.2
层号	土类编号	土类型	层厚(m)	Vs(m/s)	密度 (g/cm ³)
----	------	--------	-------	---------	-------------------------
1	1	人工填土	1	139.4	1.85
2	1	人工填土	1	152.7	1.85
3	1	人工填土	1	155.5	1.85
4	3	含砾粉质黏土	1	230.4	1.92
5	3	含砾粉质黏土	1	237.8	1.92
6	3	含砾粉质黏土	1	243.5	1.92
7	3	含砾粉质黏土	1	251.5	1.92
8	6	强风化砂岩	1	444.6	2.1
9	6	强风化砂岩	1	448.5	2.1
10	6	强风化砂岩	1	451.3	2.1
11	6	强风化砂岩	1	454.6	2.1
12	6	强风化砂岩	1	480.5	2.1
13	7	中风化砂岩		530.9	2.2

表 7.2-11 黄石经济技术开发区·铁山区 ZK10 钻孔场地土层力学模型资料

表 7.2-12 黄石经济技术开发区·铁山区 ZK11 钻孔场地土层力学模型资料

层号	土类编号	土类型	层厚(m)	Vs(m/s)	密度 (g/cm3)
1	1	人工填土	1	160.3	1.85
2	2	砖红色粉质黏土	1	181.1	1.92
3	2	砖红色粉质黏土	1	221.6	1.92
4	2	砖红色粉质黏土	1	224.7	1.92
5	2	砖红色粉质黏土	1	226.6	1.92
6	2	砖红色粉质黏土	1	228.9	1.92
7	6	强风化砂岩	1	390.9	2.1
8	6	强风化砂岩	1	430.4	2.1
9	6	强风化砂岩	1	435.3	2.1
10	7	中风化玄武岩		533.6	2.2

表 7.2-13 黄石经济技术开发区·铁山区 ZK12 钻孔场地土层力学模型资料

层号	土类编号	土类型	层厚(m)	Vs(m/s)	密度 (g/cm3)
1	2	砖红色粉质黏土	1	230.2	1.92
2	2	砖红色粉质黏土	1	232.4	1.92
3	2	砖红色粉质黏土	1	231.4	1.92
4	2	砖红色粉质黏土	1	226.5	1.92
5	2	砖红色粉质黏土	1	230.9	1.92
6	2	砖红色粉质黏土	1	235.2	1.92
7	6	全风化砂岩	1	312.5	2
8	6	强风化砂岩	1	447.3	2.1
9	6	强风化砂岩	1	449.1	2.1
10	6	强风化砂岩	1	452.4	2.1
11	6	强风化砂岩	1	455.7	2.1
12	7	中风化砂岩		532.3	2.2

层号	土类编号	土类型	层厚(m)	Vs(m/s)	密度 (g/cm3)
1	1	人工填土	1	144.9	1.85
2	2	砖红色粉质黏土	1	188.2	1.92
3	2	砖红色粉质黏土	1	191.2	1.92
4	6	全风化泥质粉砂岩	1	290.8	1.98
5	6	全风化泥质粉砂岩	1	322.6	1.98
6	6	全风化泥质粉砂岩	1	331.9	1.98
7	6	全风化泥质粉砂岩	1	334.9	1.98
8	6	强风化泥质粉砂岩	1	338.4	2
9	6	强风化泥质粉砂岩	1	423.1	2
10	6	强风化泥质粉砂岩	1	426.8	2
11	6	强风化泥质粉砂岩	1	428.5	2
12	6	强风化泥质粉砂岩	1	429.3	2
13	6	强风化泥质粉砂岩	1	430.5	2
14	6	强风化泥质粉砂岩	1	432.4	2
15	6	强风化泥质粉砂岩	1	438.8	2
16	6	强风化泥质粉砂岩	1	439.7	2
17	6	强风化泥质粉砂岩	1	440.2	2
18	6	强风化泥质粉砂岩	1	442.5	2
19	6	强风化泥质粉砂岩	1	445.1	2
20	6	强风化泥质粉砂岩	1	447.7	2
21	6	强风化泥质粉砂岩	1	448.6	2
22	6	强风化泥质粉砂岩	1	450.8	2
23	6	强风化泥质粉砂岩	1	451.2	2
24	7	中风化泥质粉砂岩		523.4	2.1

主 7 2 1 4	去てな这社+エル区 。	삼기 坂地上 巳 十	当措刑次约
夜 /.2-14	- 奥伯纪介仅小开友区 •	1111	子侯尘负科

表 7.2-15 黄石经济技术开发区·铁山区 ZK14 钻孔场地土层力学模型资料

层号	土类编号	土类型	层厚(m)	Vs(m/s)	密度(g/cm ³)
1	1	人工填土	1	140.3	1.85
2	3	含砾粉质黏土	1	220.6	1.92
3	3	含砾粉质黏土	1	222.1	1.92
4	3	含砾粉质黏土	1	223.6	1.92
5	3	含砾粉质黏土	1	225.4	1.92
6	3	含砾粉质黏土	1	227.1	1.92
7	3	含砾粉质黏土	1	230.6	1.92
8	6	全风化砂岩	1	349.5	2
9	6	强风化砂岩	1	435.3	2.1
10	6	强风化砂岩	1	437.2	2.1
11	6	强风化砂岩	1	438.4	2.1
12	6	强风化砂岩	1	440.3	2.1
13	6	强风化砂岩	1	442.6	2.1
14	6	强风化砂岩	1	446.7	2.1
15	6	强风化砂岩	1	449.5	2.1
16	6	强风化砂岩	1	452.4	2.1
17	6	强风化砂岩	1	456.3	2.1
18	6	强风化砂岩	1	457.5	2.1
19	7	中风化砂岩		527.2	2.2

层号	土类编号	土类型	层厚(m)	Vs(m/s)	密度 (g/cm ³)
1	1	人工填土	1	139.8	1.85
2	3	含砾粉质黏土	1	198.3	1.92
3	3	含砾粉质黏土	1	202.7	1.92
4	3	含砾粉质黏土	1	208.6	1.92
5	3	含砾粉质黏土	1	214.3	1.92
6	3	含砾粉质黏土	1	228.7	1.92
7	3	含砾粉质黏土	1	230.1	1.92
8	3	含砾粉质黏土	1	234.2	1.92
9	6	全风化泥质粉砂岩	1	331.5	1.98
10	6	全风化泥质粉砂岩	1	334.5	1.98
11	6	全风化泥质粉砂岩	1	336.8	1.98
12	6	全风化泥质粉砂岩	1	337.2	1.98
13	6	全风化泥质粉砂岩	1	340.1	1.98
14	6	全风化泥质粉砂岩	1	342.7	1.98
15	6	全风化泥质粉砂岩	1	345.2	1.98
16	6	全风化泥质粉砂岩	1	348.5	1.98
17	6	全风化泥质粉砂岩	1	351.3	1.98
18	6	全风化泥质粉砂岩	1	354.6	1.98
19	6	全风化泥质粉砂岩	1	358.4	1.98
20	6	强风化泥质粉砂岩	1	440.2	2
21	6	强风化泥质粉砂岩	1	442.5	2
22	6	强风化泥质粉砂岩	1	446.1	2
23	7	中风化泥质粉砂岩		510.3	2.1

表 7.2-16 黄石经济技术开发区·铁山区 ZK15 钻孔场地土层力学模型资料

表 7.2-17 黄石经济技术开发区·铁山区 ZK16 钻孔场地土层力学模型资料

	1	[1		
层号	土类编号	土类型	层厚(m)	Vs(m/s)	密度(g/cm ³)
1	1	人工填土	1	130.3	1.85
2	2	砖红色粉质黏土	1	180.2	1.92
3	6	强风化泥质粉砂岩	1	402.5	2
4	6	强风化泥质粉砂岩	1	426.4	2
5	6	强风化泥质粉砂岩	1	429.6	2
6	6	强风化泥质粉砂岩	1	432.1	2
7	6	强风化泥质粉砂岩	1	435.2	2
8	7	中风化泥质粉砂岩		520.4	2.1

表 7.2-18 黄石经济技术开发区·铁山区 ZK17 钻孔场地土层力学模型资料

层号	土类编号	土类型	层厚(m)	Vs(m/s)	密度(g/cm ³)
1	1	人工填土	1	140.3	1.85
2	5	深褐色粉质黏土	1	202.3	1.9
3	5	深褐色粉质黏土	1	204.4	1.9
4	5	深褐色粉质黏土	1	215.5	1.9
5	5	深褐色粉质黏土	1	220.3	1.9
6	3	砾质粉质黏土	1	242.5	1.94
7	6	强风化砂岩	1	451.5	2.1
8	6	强风化砂岩	1	458.3	2.1
9	7	中风化砂岩		510.1	2.2

层号	土类编号	土类型	层厚(m)	Vs(m/s)	密度 (g/cm ³)
1	1	人工填土	1	160.4	1.85
2	3	砾质粉质黏土	1	180.3	1.94
3	3	砾质粉质黏土	1	189.6	1.94
4	3	砾质粉质黏土	1	212.1	1.94
5	3	砾质粉质黏土	1	220.4	1.94
6	7	中风化灰岩		520.7	2.2

表 7.2-19 黄石经济技术开发区·铁山区 ZK18 钻孔场地土层力学模型资料

表 7.2-20 黄石经济技术开发区·铁山区 ZK19 钻孔场地土层力学模型资料

层号	土类编号	土类型	层厚(m)	Vs(m/s)	密度 (g/cm ³)
1	1	人工填土	1	138.1	1.85
2	1	人工填土	1	139.6	1.85
3	1	人工填土	1	140.4	1.85
4	1	人工填土	1	142.2	1.85
5	1	人工填土	1	143.6	1.85
6	4	中砂	1	350	1.96
7	7	中风化灰岩		533.1	2.2

表 7.2-21 黄石经济技术开发区·铁山区 ZK20 钻孔场地土层力学模型资料

层号	土类编号	土类型	层厚(m)	Vs(m/s)	密度 (g/cm ³)
1	1	人工填土	1	138.6	1.85
2	1	人工填土	1	139.4	1.85
3	1	人工填土	1	140.5	1.85
4	1	人工填土	1	142.7	1.85
5	1	人工填土	1	143.6	1.85
6	3	含砾粉质黏土	1	235.6	1.92
7	3	含砾粉质黏土	1	246.2	1.92
8	3	含砾粉质黏土	1	252.7	1.92
9	6	强风化砂质灰岩	1	448.5	2.1
10	6	强风化砂质灰岩	1	454.3	2.1
11	6	强风化砂质灰岩	1	458.6	2.1
12	6	强风化砂质灰岩	1	462.5	2.1
13	6	强风化砂质灰岩	1	465.3	2.1
14	6	强风化砂质灰岩	1	467.8	2.1
15	6	强风化砂质灰岩	1	470.2	2.1
16	7	中风化砂质灰岩		511.3	2.2

表 7.2-22 黄石经济技术开发区·铁山区 ZK21 钻孔场地土层力学模型资料

层号	土类编号	土类型	层厚(m)	Vs(m/s)	密度(g/cm ³)
1	1	人工填土	1	139.2	1.85
2	1	人工填土	1	198	1.85
3	4	中砂	1	220.5	1.96
4	4	中砂	1	232.1	1.96
5	4	中砂	1	240.6	1.96
6	4	中砂	1	252.4	1.96
7	4	中砂	1	263.5	1.96
8	2	砖红色粉质黏土	1	244.4	1.92
9	2	砖红色粉质黏土	1	248.2	1.92
10	7	中风化灰岩		511.7	2.2

1× /	.2-23 5			山心勿地上法刀子	
层号	土类编号	土类型	层厚(m)	Vs(m/s)	密度(g/cm ³)
1	1	人工填土	1	142.6	1.85
2	1	人工埴土	1	149.3	1.85
3	1	人工填土	1	160.4	1.85
4	3	令砾粉质黏土	1	224.7	1.92
5	4	由砂	1	240.4	1.92
6	1	中心	1	245.6	1.91
7	4	中型	1	250.6	1.04
/	4		1	250.0	1.94
0	4		1	230.5	1.94
9	4		1	203.3	1.94
10	6	强风化内长宕	<u> </u>	440.4	2.1
11	6	强风化内长宕	<u>l</u>	449.3	2.1
12	6	强风化闪长岩	<u> </u>	453.2	2.1
13	6	强风化闪长岩	1	458.1	2.1
14	7	中风化闪长岩		513.2	2.2
表 7	.2-24 ট	貴石经济技术开发区・铁 ι	山区 ZK23 钅	占孔场地土层力学	模型资料
层号	+ 举编号	+	厚厚(m)	Vs(m/s)	密度 (a/cm^3)
1	工 <u>八</u> 洲 」		1	138.5	1 85
2	1	人工填土	1	130.5	1.05
3	1		1	1/16	1.85
	1		1	141.0	1.85
- 4	1		1	211.4	1.03
5	3	<u>合你粉顶釉工</u>	1	211.4	1.92
6	3	含研粉质黏土	<u>l</u>	220.6	1.92
/	3	含研粉质黏土	1	225.4	1.92
8	3	含砾粉质黏土	<u>l</u>	230.7	1.92
9	3	含砾粉质黏土	1	232.1	1.92
10	7	中风化灰岩		544.1	2.2
表 7	.2-25 責	貴石经济技术开发区・铁 ι	山区 ZK24钅	占孔场地土层力学	模型资料
层号	土类编号	土类型	层厚(m)	Vs(m/s)	密度 (g/cm ³)
<u> </u>	土类编号 1	上类型 人工埴+	层厚(m)	Vs(m/s)	密度 (g/cm ³)
层号 1 2	土类编号 1 1	土类型 人工填土 人工埴土	层厚(m) 1 1	Vs(m/s) 145.3	密度 (g/cm ³) <u>1.85</u> 1.85
层号 1 2 2	土类编号 1 1	土类型 人工填土 人工填土	居厚(m) 1 1 1 1	Vs(m/s) 145.3 149.4	密度 (g/cm ³) 1.85 1.85 1.85
层号 1 2 3	土类编号 1 1 1	土类型 人工填土 人工填土 人工填土	居厚(m) 1 1 1 1 1 1 1	Vs(m/s) 145.3 149.4 152.7	密度 (g/cm ³) 1.85 1.85 1.85 1.85
层号 1 2 3 4	土类编号 1 1 1 1	土类型 人工填土 人工填土 人工填土 人工填土	居厚(m) 1 1 1 1 1 1 1 1 1 1 1	Vs(m/s) 145.3 149.4 152.7 155.8	密度 (g/cm ³) 1.85 1.85 1.85 1.85 1.85
层号 1 2 3 4 5	土类编号 1 1 1 1 1	土类型 人工填土 人工填土 人工填土 人工填土 人工填土	层厚(m) 1 1 1 1 1 1 1 1 1 1	Vs(m/s) 145.3 149.4 152.7 155.8 157.4	密度 (g/cm ³) 1.85 1.85 1.85 1.85 1.85 1.85
层号 1 2 3 4 5 6	土类编号 1 1 1 1 1 3	土类型 人工填土 人工填土 人工填土 人工填土 人工填土 含砾粉质黏土	居厚(m) 1 1 1 1 1 1 1 1 1 1 1 1 1	Vs(m/s) 145.3 149.4 152.7 155.8 157.4 233.6	密度 (g/cm ³) 1.85 1.85 1.85 1.85 1.85 1.85 1.92
层号 1 2 3 4 5 6 7	土类编号 1 1 1 1 1 3 3	土类型 人工填土 人工填土 人工填土 人工填土 人工填土 含砾粉质黏土	层厚(m) 1 1 1 1 1 1 1 1 1	Vs(m/s) 145.3 149.4 152.7 155.8 157.4 233.6 240.4	密度 (g/cm ³) 1.85 1.85 1.85 1.85 1.85 1.92 1.92
层号 1 2 3 4 5 6 7 8	土类编号 1 1 1 1 3 3 3	土类型 人工填土 人工填土 人工填土 人工填土 人工填土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土	居厚(m) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Vs(m/s) 145.3 149.4 152.7 155.8 157.4 233.6 240.4 245.7	密度 (g/cm ³) 1.85 1.85 1.85 1.85 1.85 1.92 1.92 1.92
层号 1 2 3 4 5 6 7 8 9	土类编号 1 1 1 1 3 3 3 3 3	土类型 人工填土 人工填土 人工填土 人工填土 人工填土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土	层厚(m) 1 1 1 1 1 1 1 1 1	Vs(m/s) 145.3 149.4 152.7 155.8 157.4 233.6 240.4 245.7 253.4	密度 (g/cm ³) 1.85 1.85 1.85 1.85 1.85 1.92 1.92 1.92 1.92 1.92
层号 1 2 3 4 5 6 7 8 9 10	土类编号 1 1 1 1 3 3 3 3 3 3 3	土类型 人工填土 人工填土 人工填土 人工填土 人工填土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土	层厚(m) 1 1 1 1 1 1 1 1 1	Vs(m/s) 145.3 149.4 152.7 155.8 157.4 233.6 240.4 245.7 253.4 255.6	密度 (g/cm ³) 1.85 1.85 1.85 1.85 1.85 1.92 1.92 1.92 1.92 1.92 1.92
层号 1 2 3 4 5 6 7 8 9 10 11	土类编号 1 1 1 1 3 3 3 3 3 6	土类型 人工填土 人工填土 人工填土 人工填土 人工填土 含砾粉质黏土	层厚(m) 1 1 1 1 1 1 1 1 1	Vs(m/s) 145.3 149.4 152.7 155.8 157.4 233.6 240.4 245.7 253.4 255.6 302.4	密度 (g/cm ³) 1.85 1.85 1.85 1.85 1.85 1.92 1.92 1.92 1.92 1.92 1.92 2
层号 1 2 3 4 5 6 7 8 9 10 11 12	土类编号 1 1 1 1 3 3 3 3 3 6 6 6	土类型 人工填土 人工填土 人工填土 人工填土 个工填土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 全砾粉质黏土 全砾粉质黏土	层厚(m) 1 1 1 1 1 1 1 1 1	Vs(m/s) 145.3 149.4 152.7 155.8 157.4 233.6 240.4 245.7 253.4 255.6 302.4 352.6	密度 (g/cm ³) 1.85 1.85 1.85 1.85 1.85 1.92 1.92 1.92 1.92 1.92 1.92 1.92 2 2
层号 1 2 3 4 5 6 7 8 9 10 11 12 13	土类编号 1 1 1 1 3 3 3 3 3 3 6 6 6 6 6	土类型 人工填土 人工填土 人工填土 人工填土 人工填土 含砾粉质黏土 全风化砂岩 全风化砂岩 全风化砂岩	层厚(m) 1 1 1 1 1 1 1 1 1	Vs(m/s) 145.3 149.4 152.7 155.8 157.4 233.6 240.4 245.7 253.4 255.6 302.4 352.6 357.4	密度 (g/cm ³) 1.85 1.85 1.85 1.85 1.85 1.92 1.92 1.92 1.92 1.92 1.92 2 2 2 2
层号 1 2 3 4 5 6 7 8 9 10 11 12 13 14	土类编号 1 1 1 1 3 3 3 3 3 6 6 6 6 6 6	土类型 人工填土 人工填土 人工填土 人工填土 人工填土 人工填土 含砾粉质黏土 全风化砂岩 全风化砂岩 全风化砂岩 全风化砂岩 全风化砂岩	层厚(m) 1 1 1 1 1 1 1 1 1	Vs(m/s) 145.3 149.4 152.7 155.8 157.4 233.6 240.4 245.7 253.4 255.6 302.4 352.6 357.4 360.1	密度 (g/cm ³) 1.85 1.85 1.85 1.85 1.85 1.92 1.92 1.92 1.92 1.92 2 2 2 2 2 2 2
层号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	上	土类型 人工填土 人工填土 人工填土 人工填土 人工填土 人工填土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 全砾松质黏土 全砾松质黏土 全砾松质黏土 全砾松质黏土 全风化砂岩 全风化砂岩 全风化砂岩 全风化砂岩 全风化砂岩 全风化砂岩	层厚(m) 1 1 1 1 1 1 1 1 1	Vs(m/s) 145.3 149.4 152.7 155.8 157.4 233.6 240.4 245.7 253.4 255.6 302.4 352.6 357.4 360.1 362.7	密度 (g/cm ³) 1.85 1.85 1.85 1.85 1.85 1.92 1.92 1.92 1.92 1.92 2 2 2 2 2 2 2 2 2 2 2 2 2
层号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	土	土类型 人工填土 人工填土 人工填土 人工填土 人工填土 人工填土 含砾粉质黏土 全风化砂岩 全风化砂岩	层厚(m) 1 1 1 1 1 1 1 1 1	Vs(m/s) 145.3 149.4 152.7 155.8 157.4 233.6 240.4 245.7 253.4 255.6 302.4 352.6 357.4 360.1 362.7 367.5	密度 (g/cm ³) 1.85 1.85 1.85 1.85 1.85 1.92 1.92 1.92 1.92 1.92 2 2 2 2 2 2 2 2 2 2 2 2 2
层号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	上	土类型 人工填土 人工填土 人工填土 人工填土 人工填土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 全风化砂岩 全风化砂岩 全风化砂岩 全风化砂岩 全风化砂岩 全风化砂岩 强风化砂岩	层厚(m) 1 1 1 1 1 1 1 1 1	Vs(m/s) 145.3 149.4 152.7 155.8 157.4 233.6 240.4 245.7 253.4 255.6 302.4 352.6 357.4 360.1 362.7 367.5 442.3	密度 (g/cm ³) 1.85 1.85 1.85 1.85 1.85 1.92 1.92 1.92 1.92 1.92 2 2 2 2 2 2 2 2 2 2 2 2 2
层号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	上	土类型 人工填土 人工填土 人工填土 人工填土 人工填土 名砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 全风化砂岩 全风化砂岩 全风化砂岩 全风化砂岩 全风化砂岩 全风化砂岩 强风化砂岩	层厚(m) 1 1 1 1 1 1 1 1 1	Vs(m/s) 145.3 149.4 152.7 155.8 157.4 233.6 240.4 245.7 253.4 255.6 302.4 352.6 357.4 360.1 362.7 367.5 442.3 448.6	密度 (g/cm ³) 1.85 1.85 1.85 1.85 1.85 1.92 1.92 1.92 1.92 2. 2 2 2 2 2 2 2 2 2 2 2 2 2
层号12345678910111213141516171819	土 土	土类型 人工填土 人工填土 人工填土 人工填土 人工填土 名砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 全风化砂岩 全风化砂岩 全风化砂岩 全风化砂岩 全风化砂岩 强风化砂岩 强风化砂岩	层厚(m) 1 1 1 1 1 1 1 1 1	Vs(m/s) 145.3 149.4 152.7 155.8 157.4 233.6 240.4 245.7 253.4 255.6 302.4 352.6 357.4 360.1 362.7 367.5 442.3 448.6 452.1	密度 (g/cm ³) 1.85 1.85 1.85 1.85 1.85 1.92 1.92 1.92 1.92 2. 2 2 2 2 2 2 2 2 2 2 2 2 2
层号1234567891011121314151617181920	上	土类型 人工填土 人工填土 人工填土 人工填土 人工填土 名砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 全风化砂岩 全风化砂岩 全风化砂岩 全风化砂岩 全风化砂岩 强风化砂岩 强风化砂岩 强风化砂岩	层厚(m) 1 1 1 1 1 1 1 1 1	Vs(m/s) 145.3 149.4 152.7 155.8 157.4 233.6 240.4 245.7 253.4 255.6 302.4 352.6 357.4 360.1 362.7 367.5 442.3 448.6 452.1 453.4	密度 (g/cm ³) 1.85 1.85 1.85 1.85 1.85 1.92 1.92 1.92 1.92 1.92 2.2 2 2 2 2 2 2 2 2 2 2 2 2 2
层号123456789101112131415161718192021	上	土类型 人工填土 人工填土 人工填土 人工填土 人工填土 之工填土 个工填土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 全风化砂岩 全风化砂岩 全风化砂岩 全风化砂岩 全风化砂岩 强风化砂岩 强风化砂岩 强风化砂岩	层厚(m) 1 1 1 1 1 1 1 1 1	Vs(m/s) 145.3 149.4 152.7 155.8 157.4 233.6 240.4 245.7 253.4 255.6 302.4 352.6 357.4 360.1 362.7 367.5 442.3 448.6 452.1 453.4	密度 (g/cm ³) 1.85 1.85 1.85 1.85 1.85 1.92 1.92 1.92 1.92 2.2 2 2 2 2 2 2 2 2 2 2 2 2 2
层号12345678910111213141516171819202122	上	土类型 人工填土 人工填土 人工填土 人工填土 人工填土 之工填土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 全风化砂岩 全风化砂岩 全风化砂岩 全风化砂岩 全风化砂岩 强风化砂岩 强风化砂岩 强风化砂岩 强风化砂岩	层厚(m) 1 1 1 1 1 1 1 1 1	Vs(m/s) 145.3 149.4 152.7 155.8 157.4 233.6 240.4 245.7 253.4 255.6 302.4 352.6 357.4 360.1 362.7 367.5 442.3 448.6 452.1 453.4 455.1 457.2	密度 (g/cm ³) 1.85 1.85 1.85 1.85 1.85 1.92 1.92 1.92 1.92 2. 2 2 2 2 2 2 2 2 2 2 2 2 2
层号12345678910111213141516171819202122	上	土类型 人工填土 人工填土 人工填土 人工填土 人工填土 之工填土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 含砾粉质黏土 全风化砂岩 全风化砂岩 全风化砂岩 全风化砂岩 全风化砂岩 强风化砂岩 强风化砂岩 强风化砂岩	层厚(m) 1 1 1 1 1 1 1 1 1	Vs(m/s) 145.3 149.4 152.7 155.8 157.4 233.6 240.4 245.7 253.4 255.6 302.4 352.6 357.4 360.1 362.7 367.5 442.3 448.6 452.1 453.4 455.1 457.3	密度 (g/cm^3) 1.85 1.85 1.85 1.85 1.85 1.92 1.92 1.92 1.92 1.92 2 2 2 2 2 2 2 2 2 2 2 2 2

表 7.2-23	黄石经济技术开发区·铁山区 ZK22 钻孔场地土层力学模型资料

层号	土类编号	土类型	层厚(m)	Vs(m/s)	密度(g/cm ³)
1	1	人工填土	1	140.4	1.85
2	6	全风化砂岩	1	339.6	2
3	6	全风化砂岩	1	342.6	2
4	6	全风化砂岩	1	345.1	2
5	6	全风化砂岩	1	347.4	2
6	6	全风化砂岩	1	350.2	2
7	6	全风化砂岩	1	354.2	2
8	6	全风化砂岩	1	356.7	2
9	6	全风化砂岩	1	358.1	2
10	6	全风化砂岩	1	360.7	2
11	6	全风化砂岩	1	362.4	2
12	6	全风化砂岩	1	365.3	2
13	6	强风化砂岩	1	433.4	2.1
14	6	强风化砂岩	1	445.7	2.1
15	6	强风化砂岩	1	446.8	2.1
16	6	强风化砂岩	1	447.5	2.1
17	6	强风化砂岩	1	448.3	2.1
18	6	强风化砂岩	1	449.5	2.1
19	6	强风化砂岩	1	450.7	2.1
20	6	强风化砂岩	1	452	2.1
21	6	强风化砂岩	1	453.2	2.1
22	6	强风化砂岩	1	455.2	2.1
23	6	强风化砂岩	1	457.3	2.1
24	6	强风化砂岩	1	459.5	2.1
25	6	强风化砂岩	1	460.1	2.1
26	6	强风化砂岩	1	462.3	2.1
27	7	中风化砂岩		501.4	2.2

表 7.2-26 黄石经济技术开发区·铁山区 ZK25 钻孔场地土层力学模型资料

7.2.2 计算结果

根据工程结构抗震设计的要求,对本项目目标区进行场地地震反应计 算时,分别取目标区 50 年超越概率 63%、10%、2%和 100 年超越概率 63%、 10%、2%、1%的基岩地震动加速度时程(各 10 条样本)幅值的一半作为 一维土层地震反应计算模型的基底入射波输入量,并假定地震波为从基岩 面垂直入射。对应每一种情况,计算出目标区地表处地震动反应的加速度 时程及其反应谱值。对应于 50 年超越概率 63%、10%、2%和 100 年超越概 率 63%、10%、2%、1%的地表反应的水平向地震动峰值加速度的计算结果 见表 7.2-27。

地块	计算点编号		50	年超越	既率	100 年超越概率			
分区	7	十月点编了	63%	10%	2%	63%	10%	2%	1%
	ŧ	基岩波峰值	15.12	57.14	118.12	24.39	80.29	154.54	195.25
1	地表加 速度反	1 (HSZK18)	21.75	76.92	144.96	34.83	101.21	176.00	210.04
早山地块		2 (HSZK19)	22.66	79.26	147.48	35.78	108.56	187.45	221.97
	应峰值	3 (HSZK20)	23.86	83.11	157.57	37.12	118.62	207.70	254.86
	ŧ	基岩波峰值	18.04	58.72	110.11	27.51	78.95	138.93	169.72
		4 (HSZK01)	25.50	81.29	157.08	37.06	113.19	200.20	235.67
		5 (HSZK02)	24.67	78.68	151.63	35.88	112.77	189.51	227.99
		6 (HSZK03)	27.06	82.84	159.22	39.04	115.01	202.18	239.79
(2)		7 (HSZK04)	26.31	80.99	160.67	38.90	115.93	204.39	238.06
汪仁	地表加	8 (HSZK05)	26.19	82.46	162.50	39.24	116.42	206.42	241.24
地块	速度反应峰值	9 (HSZK06)	26.59	81.99	161.12	38.55	114.82	201.34	238.54
	/ 112	10 (HSZK07)	25.30	71.41	132.37	35.27	96.09	170.07	200.49
		11 (HSZK08)	24.16	79.64	147.98	36.18	109.09	185.57	233.47
		12 (HSZK09)	27.74	85.34	166.03	42.54	119.56	206.15	236.80
		13 (HSZK11)	26.40	82.86	162.19	39.45	114.47	199.42	238.06
	ţ	基岩波峰值	19.00	57.96	104.97	28.37	76.67	132.30	160.66
		14 (HSZK10)	27.22	84.18	156.39	41.06	114.73	194.62	231.81
		15 (HSZK12)	26.15	81.50	147.77	38.83	109.02	182.74	215.33
		16 (HSZK13)	25.61	80.51	146.23	39.85	104.44	182.26	216.97
3	地表加	17 (HSZK14)	27.50	81.82	153.14	40.85	113.84	190.45	230.30
四禄地块	速度反	18 (HSZK15)	27.30	85.17	159.56	43.91	118.22	196.83	239.46
- / -	应峰值	19 (HSZK16)	24.62	74.19	140.89	36.14	97.86	170.78	204.17
		20 (HSZK17)	27.32	78.42	143.58	38.84	104.16	182.92	212.24
		21 (HSZK24)	27.79	85.67	161.72	43.49	119.09	201.12	248.96
		22 (HSZK25)	24.80	74.10	136.51	37.63	101.97	167.39	217.80
	ţ	基岩波峰值	19.82	56.41	97.18	28.80	73.15	118.67	143.81
(4)	地表加	23 (HSZK21)	25.82	79.23	141.44	39.57	107.09	169.67	204.49
 玩山 地块	速度反	24 (HSZK22)	27.36	83.90	144.19	42.12	112.28	176.97	221.91
	应峰值	25 (HSZK23)	27.18	84.65	147.54	41.14	118.32	179.24	217.27

表 7.2-27	不同基岩加速度输入下场地土地表的加速度反应峰值	(gal)
• •		0

7.3 场地设计地震动参数确定

在前面得到的场地土层地震反应计算结果的基础上,本节将给出目标 区的设计地震动参数,包括设计地震动峰值加速度、加速度反应谱值。为 减少钻探和原位测试结果对土层地震反应分析引起的偶然误差,设计地震 动峰值加速度是综合考虑样本峰值和短周期加速度反应谱值确定的,加速 度反应谱是对计算加速度反应谱采用均值拟合方法确定的。

目标区设计地震动加速度反应谱取为:

$$S_{a}(T) = A_{max}\beta(T)$$

其中, A_{max}设计地震动峰值加速度,由表 7.2-25 确定: β(T)为设计地震 动加速度放大系数反应谱,按不同周期形式给出如下:

$$\beta(\mathbf{T}) = \begin{cases} 1 & 0 \\ 1 + (\beta_{\rm m} - 1)\frac{T}{T_0} & 0 < T \le T_0 \\ \beta_{\rm m} & T_0 < T \le T_g \\ \beta_{\rm m}(\frac{T_g}{T})^{\gamma} & T_g < T \le 10.0 \end{cases}$$

式中,T为结构自振周期, β_{max} 为反应谱最大值; T_0 为平台段起始周期, T_q 为特征周期, γ 为反应谱下降段的衰减指数。

《建筑抗震设计规范》(GB50011-2010)中地震影响系数 α(T)与表中的 A_{max}和 β(T)的关系为:

$$\alpha(T) = \frac{A_{max}\beta(T)}{g}$$

当建筑结构的阻尼比等于 0.05 时, γ 取 0.9, η₂取 1, η₁取 0.02; 当建 筑结构的阻尼比按照有关规定不等于 0.05 时,地震影响系数曲线的阻尼调 整系数和形状参数应符合下列规定。

曲线下降段衰减指数按下式确定:

当阻尼比变化 ζ , 曲线下降段衰减指数 γ 按下式确定:

$$\gamma = 0.9 + \frac{0.05 - \zeta}{0.3 + 6\zeta}$$

直线下降段的下降斜率调整系数按下式确定:

$$\eta_1 = 0.02 + \frac{0.05 - \zeta}{4 + 32\zeta} \ge 0$$

阻尼调整系数按下式确定:

$$\eta_2 = 1 + \frac{0.05 - \zeta}{0.08 + 1.6\zeta} \ge 0.55$$

目标区自由地表面处对应于各个概率水准的水平向地震动峰值加速度反应谱曲线(阻尼比 5%)的计算结果分别如图 7.3-1 至图 7.3-25 所示。

图 7.3-4 HSZK04 场地地表加速度反应谱及设计反应谱

225

238

242

依据钻孔资料和剪切波速测试结果,确定本目标区地震输入界面。本 工程采用剪切波速值大于 500m/s 的土层顶面作为计算输入界面。以场地地 震危险性分析结果和 25 个钻孔场地地震动峰值加速度和加速度反应谱计算 结果为基础,按上述函数形式进行拟合,得到目标区的设计地震动峰值加 速度和加速度反应谱参数如表 7.3-1 至 7.3-25。表中T₀为平台段起始周期; T_g 为特征周期; A_{max}为峰值加速度; β_{max}为相对反应谱最大值; α_{max} 为地震 影响系数最大值;γ为反应谱下降段的衰减指数。图 7.3-26 至 7.3-50 为场地 的不同钻孔对应的地表水平向场地规准反应谱图。

表	7	3	_	1
-1		••		т

HSZK01 目标区设计地震动参数(阻尼比 5%)

场地 (钻孔)	超越概率	$T_0(\mathbf{s})$	<i>Tg</i> (s)	$A_{\max}(\text{gal})$	$\beta_{ m max}$	$\alpha_{\rm max}$	γ
	50年63%	0.1	0.30	25.50	2.5	0.064	0.9
	50年10%	0.1	0.35	81.29	2.5	0.203	0.9
HSZK01	50年2%	0.1	0.40	157.08	2.5	0.393	0.9
	100年63%	0.1	0.30	37.06	2.5	0.093	0.9
	100年10%	0.1	0.35	113.19	2.5	0.283	0.9
	100年2%	0.1	0.40	200.20	2.5	0.501	0.9
	100年1%	0.1	0.40	235.67	2.5	0.589	0.9

注: $1.\alpha_{max}$ 为最大地震影响系数, $\alpha_{max}=A_{max}$ · β_{max}/g 。 2.g 为重力加速度(1000cm/s²)

图 7.3-26 HSZK01 场地 50、100 年不同超越概率(5%阻尼比)地表水平向场地规准反应谱

表 7.3-2		SZK02 E	目标区设计	地震动参数(阻尼比 59	%)	
场地 (钻孔)	超越概率	$T_0(\mathbf{s})$	<i>Tg</i> (s)	$A_{\max}(\text{gal})$	β_{\max}	$\alpha_{\rm max}$	γ
	50年63%	0.1	0.30	24.67	2.5	0.062	0.9
	50年10%	0.1	0.35	78.68	2.5	0.197	0.9
	50年2%	0.1	0.40	151.63	2.5	0.379	0.9
HSZK01	100年63%	0.1	0.30	35.88	2.5	0.090	0.9
	100年10%	0.1	0.35	112.77	2.5	0.282	0.9
	100年2%	0.1	0.40	189.51	2.5	0.474	0.9
	100年1%	0.1	0.40	227.99	2.5	0.570	0.9

注: $1.\alpha_{max}$ 为最大地震影响系数, $\alpha_{max}=A_{max}\cdot\beta_{max}/g$ 。 2.g 为重力加速度(1000cm/s²)

表 7.3-3

HSZK03 目标区设计地震动参数(阻尼比 5%)

场地 (钻孔)	超越概率	$T_0(\mathbf{s})$	<i>Tg</i> (s)	$A_{\max}(gal)$	β_{\max}	$\alpha_{\rm max}$	γ
	50年63%	0.1	0.35	27.06	2.5	0.068	0.9
	50年10%	0.1	0.35	82.84	2.5	0.207	0.9
HSZK03	50年2%	0.1	0.4	159.22	2.5	0.398	0.9
	100年63%	0.1	0.35	39.04	2.5	0.098	0.9
	100年10%	0.1	0.35	115.01	2.5	0.288	0.9
	100年2%	0.1	0.4	202.18	2.5	0.505	0.9
	100年1%	0.1	0.4	239.79	2.5	0.599	0.9

注: $1.\alpha_{max}$ 为最大地震影响系数, $\alpha_{max}=A_{max}\cdot\beta_{max}/g$ 。 2.g 为重力加速度(1000cm/s²)

图 7.3-28 HSZK03 场地 50、100 年不同超越概率(5%阻尼比)地表水平向场地规准反应谱

HSZK04 目标区设计地震动参数(阻尼比 5%)

场地 (钻孔)	超越概率	$T_0(\mathbf{s})$	Tg(s)	$A_{\max}(\text{gal})$	$eta_{ ext{max}}$	$\alpha_{\rm max}$	γ
	50年63%	0.1	0.30	26.31	2.5	0.066	0.9
	50年10%	0.1	0.35	80.99	2.5	0.202	0.9
	50年2%	0.1	0.40	160.67	2.5	0.402	0.9
HSZK04	100年63%	0.1	0.30	38.90	2.5	0.097	0.9
	100年10%	0.1	0.35	115.93	2.5	0.290	0.9
	100年2%	0.1	0.40	204.39	2.5	0.511	0.9
	100年1%	0.1	0.40	238.06	2.5	0.595	0.9

注: $1.\alpha_{max}$ 为最大地震影响系数, $\alpha_{max}=A_{max}\cdot\beta_{max}/g$ 。 2.g 为重力加速度(1000cm/s²)

HSZK05 目标区设计地震动参数(阻尼比 5%)

场地 (钻孔)	超越概率	$T_0(\mathbf{s})$	<i>Tg</i> (s)	$A_{\max}(gal)$	$\beta_{ m max}$	$\alpha_{\rm max}$	γ
	50年63%	0.1	0.35	26.19	2.5	0.065	0.9
	50年10%	0.1	0.35	82.46	2.5	0.206	0.9
	50年2%	0.1	0.40	162.50	2.5	0.406	0.9
HSZK01	100年63%	0.1	0.35	39.24	2.5	0.098	0.9
	100年10%	0.1	0.35	116.42	2.5	0.291	0.9
	100年2%	0.1	0.40	206.42	2.5	0.516	0.9
	100年1%	0.1	0.40	241.24	2.5	0.603	0.9

图 7.3-29 HSZK04 场地 50、100 年不同超越概率(5%阻尼比)地表水平向场地规准反应谱

图 7.3-30 HSZK05 场地 50、100 年不同超越概率(5%阻尼比)地表水平向场地规准反应谱

表 7.3-	長 7.3-6 HSZK06 目标区设计地震动参数(阻尼比 5%)						
场地 (钻孔)	超越概率	$T_0(\mathbf{s})$	<i>Tg</i> (s)	$A_{\max}(\text{gal})$	β_{\max}	$\alpha_{\rm max}$	γ
	50年63%	0.1	0.30	26.59	2.5	0.066	0.9
	50年10%	0.1	0.35	81.99	2.5	0.205	0.9
	50年2%	0.1	0.40	161.12	2.5	0.403	0.9
HSZK06	100年63%	0.1	0.30	38.55	2.5	0.096	0.9
	100年10%	0.1	0.35	114.82	2.5	0.287	0.9
	100年2%	0.1	0.40	201.34	2.5	0.503	0.9
	100年1%	0.1	0.40	238.54	2.5	0.596	0.9

HSZK06 目标区设计地震动参数(阻尼比 5%)

注: $1.\alpha_{max}$ 为最大地震影响系数, $\alpha_{max}=A_{max}\cdot\beta_{max}/g$ 。 2.g 为重力加速度(1000cm/s²)

表 7.3-7 HSZK07 目标区设计地震动参数(阻尼比 5%)						%)	
场地 (钻孔)	超越概率	$T_0(\mathbf{s})$	Tg(s)	$A_{\max}(\text{gal})$	$\beta_{ m max}$	$\alpha_{\rm max}$	γ
	50年63%	0.1	0.30	25.30	2.5	0.063	0.9
	50年10%	0.1	0.35	71.41	2.5	0.179	0.9
	50年2%	0.1	0.40	132.37	2.5	0.331	0.9
HSZK07	100年63%	0.1	0.30	35.27	2.5	0.088	0.9
	100年10%	0.1	0.35	96.09	2.5	0.240	0.9
	100年2%	0.1	0.40	170.07	2.5	0.425	0.9
	100年1%	0.1	0.40	200.49	2.5	0.501	0.9
· · · ·	1. 出旦上山雨	则山石北		0 1- 2- 2	チャート	$\pm (1000 / -2)$	

注: $1.\alpha_{max}$ 为 取 大 地 農 影 响 糸 数 , $\alpha_{max} = A_{max} \cdot \beta_{max}/g$ 。 2.g 为 重 力 加 速 度(1000 cm/s²)

图 7.3-32 HSZK07 场地 50、100 年不同超越概率(5%阻尼比)地表水平向场地规准反应谱

HSZK08 目标区设计地震动参数(阻尼比 5%)

场地 (钻孔)	超越概率	$T_0(\mathbf{s})$	<i>Tg</i> (s)	$A_{\max}(gal)$	$\beta_{ m max}$	$\alpha_{\rm max}$	γ
	50年63%	0.1	0.30	24.16	2.5	0.060	0.9
	50年10%	0.1	0.35	79.64	2.5	0.199	0.9
	50年2%	0.1	0.40	147.98	2.5	0.370	0.9
HSZK08	100年63%	0.1	0.30	36.18	2.5	0.090	0.9
	100年10%	0.1	0.35	109.09	2.5	0.273	0.9
	100年2%	0.1	0.40	185.57	2.5	0.464	0.9
	100年1%	0.1	0.40	233.47	2.5	0.584	0.9
		E117 1			7-11.4	+ (1000 1)	

注: $1.\alpha_{max}$ 为最大地震影响系数, $\alpha_{max}=A_{max}\cdot\beta_{max}/g$ 。 2.g 为重力加速度(1000cm/s²)

HSZK09 目标区设计地震动参数(阻尼比 5%)

场地 (钻孔)	超越概率	$T_0(\mathbf{s})$	<i>Tg</i> (s)	$A_{\max}(gal)$	β_{\max}	$\alpha_{\rm max}$	γ
	50年63%	0.1	0.30	27.74	2.5	0.069	0.9
	50年10%	0.1	0.35	85.34	2.5	0.213	0.9
	50年2%	0.1	0.40	166.03	2.5	0.415	0.9
HSZK09	100年63%	0.1	0.30	42.54	2.5	0.106	0.9
	100年10%	0.1	0.35	119.56	2.5	0.299	0.9
	100年2%	0.1	0.40	206.15	2.5	0.515	0.9
	100年1%	0.1	0.40	236.80	2.5	0.592	0.9

图 7.3-33 HSZK08 场地 50、100 年不同超越概率(5%阻尼比)地表水平向场地规准反应谱

图 7.3-34 HSZK09 场地 50、100 年不同超越概率(5%阻尼比)地表水平向场地规准反应谱

					(/	
场地 (钻孔)	超越概率	$T_0(\mathbf{s})$	<i>Tg</i> (s)	$A_{\max}(gal)$	$\beta_{ m max}$	$\alpha_{\rm max}$	γ
HSZK10	50年63%	0.1	0.30	27.22	2.5	0.068	0.9
	50年10%	0.1	0.35	84.18	2.5	0.210	0.9
	50年2%	0.1	0.40	156.39	2.5	0.391	0.9
	100年63%	0.1	0.30	41.06	2.5	0.103	0.9
	100年10%	0.1	0.35	114.73	2.5	0.287	0.9
	100年2%	0.1	0.40	194.62	2.5	0.487	0.9
	100年1%	0.1	0.40	231.81	2.5	0.580	0.9

表 7.3-10 HSZ

HSZK10 目标区设计地震动参数(阻尼比 5%)

注: $1.\alpha_{max}$ 为最大地震影响系数, $\alpha_{max}=A_{max}\cdot\beta_{max}/g$ 。 2.g 为重力加速度(1000cm/s²)

表 7.3-	-11 I	HSZK11 目标区设计地震动参数(阻尼比 5%)						
场地 (钻孔)	超越概率	$T_0(\mathbf{s})$	<i>Tg</i> (s)	$A_{\max}(\text{gal})$	$\beta_{ m max}$	$\alpha_{\rm max}$	γ	
	50年63%	0.1	0.30	26.40	2.5	0.066	0.9	
	50年10%	0.1	0.35	82.86	2.5	0.207	0.9	
	50年2%	0.1	0.40	162.19	2.5	0.405	0.9	
HSZK11	100年63%	0.1	0.30	39.45	2.5	0.099	0.9	
	100年10%	0.1	0.35	114.47	2.5	0.286	0.9	
	100年2%	0.1	0.40	199.42	2.5	0.499	0.9	
	100年1%	0.1	0.40	238.06	2.5	0.595	0.9	

图 7.3-36 HSZK11 场地 50、100 年不同超越概率(5%阻尼比)地表水平向场地规准反应谱

HSZK12 目标区设计地震动参数(阻尼比 5%)

超越概率	$T_0(\mathbf{s})$	<i>Tg</i> (s)	$A_{\max}(\text{gal})$	$eta_{ ext{max}}$	$\alpha_{ m max}$	γ
50年63%	0.1	0.30	26.15	2.5	0.065	0.9
50年10%	0.1	0.35	81.50	2.5	0.204	0.9
50年2%	0.1	0.40	147.77	2.5	0.369	0.9
100年63%	0.1	0.30	38.83	2.5	0.097	0.9
100年10%	0.1	0.35	109.02	2.5	0.273	0.9
100年2%	0.1	0.40	182.74	2.5	0.457	0.9
100年1%	0.1	0.40	215.33	2.5	0.538	0.9
	超越概率 50年63% 50年10% 50年2% 100年63% 100年10% 100年2% 100年1%	超越概率 $T_0(s)$ 50年63%0.150年10%0.150年2%0.1100年63%0.1100年10%0.1100年1%0.1100年1%0.1	超越概率T0(s)Tg(s)50年63%0.10.3050年10%0.10.3550年2%0.10.40100年63%0.10.30100年10%0.10.35100年2%0.10.40100年1%0.10.40	超越概率T0(s)Tg(s)Amax(gal)50年63%0.10.3026.1550年10%0.10.3581.5050年2%0.10.40147.77100年63%0.10.3038.83100年10%0.10.35109.02100年2%0.10.40182.74100年1%0.10.40215.33	超越概率 $T_0(s)$ $Tg(s)$ $A_{max}(gal)$ β_{max} 50年63%0.10.3026.152.550年10%0.10.3581.502.550年2%0.10.40147.772.5100年63%0.10.3038.832.5100年10%0.10.35109.022.5100年1%0.10.40182.742.5100年1%0.10.40215.332.5	超越概率 $T_0(s)$ $Tg(s)$ $A_{max}(gal)$ β_{max} α_{max} 50年63%0.10.3026.152.50.06550年10%0.10.3581.502.50.20450年2%0.10.40147.772.50.369100年63%0.10.3038.832.50.097100年10%0.10.35109.022.50.273100年2%0.10.40182.742.50.457100年1%0.10.40215.332.50.538

注: $1.\alpha_{max}$ 为最大地震影响系数, $\alpha_{max}=A_{max}\cdot\beta_{max}/g$ 。 2.g 为重力加速度(1000cm/s²)

表	7	.3-	-1	3
		-		-

HSZK13 目标区设计地震动参数(阻尼比 5%)

场地 (钻孔)	超越概率	$T_0(\mathbf{s})$	<i>Tg</i> (s)	$A_{\max}(\text{gal})$	$\beta_{ m max}$	$\alpha_{\rm max}$	γ
	50年63%	0.1	0.35	25.61	2.5	0.064	0.9
	50年10%	0.1	0.35	80.51	2.5	0.201	0.9
	50年2%	0.1	0.40	146.23	2.5	0.366	0.9
HSZK13	100年63%	0.1	0.35	39.85	2.5	0.100	0.9
	100年10%	0.1	0.35	104.44	2.5	0.261	0.9
	100年2%	0.1	0.40	182.26	2.5	0.456	0.9
	100年1%	0.1	0.40	216.97	2.5	0.542	0.9

图 7.3-37 HSZK12 场地 50、100 年不同超越概率(5%阻尼比)地表水平向场地规准反应谱

图 7.3-38 HSZK13 场地 50、100 年不同超越概率(5%阻尼比)地表水平向场地规准反应谱

表 7.3-	-14	HSZK14 目标区设计地震动参数(阻尼比 5%)						
场地 (钻孔)	超越概率	<i>T</i> ₀ (s)	<i>Tg</i> (s)	$A_{\max}(\text{gal})$	β_{\max}	$\alpha_{ m max}$	γ	
	50年63%	0.1	0.35	27.50	2.5	0.069	0.9	
	50年10%	0.1	0.35	81.82	2.5	0.205	0.9	
	50年2%	0.1	0.40	153.14	2.5	0.383	0.9	
HSZK14	100年63%	0.1	0.35	40.85	2.5	0.102	0.9	
	100年10%	0.1	0.35	113.84	2.5	0.285	0.9	
	100年2%	0.1	0.40	190.45	2.5	0.476	0.9	
	100年1%	0.1	0.40	230.30	2.5	0.576	0.9	

注: $1.\alpha_{max}$ 为最大地震影响系数, $\alpha_{max}=A_{max}$ · β_{max}/g 。 2.g 为重力加速度(1000cm/s²)

1x 1.J-1J

HSZK15 目标区设计地震动参数(阻尼比 5%)

场地 (钻孔)	超越概率	$T_0(\mathbf{s})$	<i>Tg</i> (s)	$A_{\max}(gal)$	$\beta_{ m max}$	$\alpha_{\rm max}$	γ
	50年63%	0.1	0.35	27.30	2.5	0.068	0.9
HSZK15	50年10%	0.1	0.35	85.17	2.5	0.213	0.9
	50年2%	0.1	0.40	159.56	2.5	0.399	0.9
	100年63%	0.1	0.35	43.91	2.5	0.110	0.9
	100年10%	0.1	0.35	118.22	2.5	0.296	0.9
	100年2%	0.1	0.40	196.83	2.5	0.492	0.9
	100年1%	0.1	0.40	239.46	2.5	0.599	0.9

图 7.3-40 HSZK15 场地 50、100 年不同超越概率(5%阻尼比)地表水平向场地规准反应谱

HSZK16 目标区设计地震动参数(阻尼比 5%)

超越概率	$T_0(\mathbf{s})$	Tg(s)	$A_{\max}(gal)$	$eta_{ ext{max}}$	$\alpha_{\rm max}$	γ
50年63%	0.1	0.30	24.62	2.5	0.062	0.9
50年10%	0.1	0.35	74.19	2.5	0.185	0.9
50年2%	0.1	0.40	140.89	2.5	0.352	0.9
100年63%	0.1	0.30	36.14	2.5	0.090	0.9
100年10%	0.1	0.35	97.86	2.5	0.245	0.9
100年2%	0.1	0.40	170.78	2.5	0.427	0.9
100年1%	0.1	0.40	204.17	2.5	0.510	0.9
	超越概率 50年63% 50年10% 50年2% 100年63% 100年10% 100年2% 100年1%	超越概率T0(s)50年63%0.150年10%0.150年2%0.1100年63%0.1100年10%0.1100年1%0.1100年1%0.1	超越概率T0(s)Tg(s)50年63%0.10.3050年10%0.10.3550年2%0.10.40100年63%0.10.30100年10%0.10.35100年2%0.10.40100年1%0.10.40	超越概率 $T_0(s)$ $Tg(s)$ $A_{max}(gal)$ 50年63%0.10.3024.6250年10%0.10.3574.1950年2%0.10.40140.89100年63%0.10.3036.14100年10%0.10.3597.86100年2%0.10.40170.78100年1%0.10.40204.17	超越概率 $T_0(s)$ $Tg(s)$ $A_{max}(gal)$ β_{max} 50年63%0.10.3024.622.550年10%0.10.3574.192.550年2%0.10.40140.892.5100年63%0.10.3036.142.5100年10%0.10.3597.862.5100年1%0.10.40170.782.5100年1%0.10.40204.172.5	超越概率 $T_0(s)$ $Tg(s)$ $A_{max}(gal)$ β_{max} α_{max} 50年63%0.10.3024.622.50.06250年10%0.10.3574.192.50.18550年2%0.10.40140.892.50.352100年63%0.10.3036.142.50.090100年10%0.10.3597.862.50.245100年2%0.10.40170.782.50.427100年1%0.10.40204.172.50.510

注: $1.\alpha_{max}$ 为最大地震影响系数, $\alpha_{max}=A_{max}\cdot\beta_{max}/g$ 。 2.g 为重力加速度(1000cm/s²)

王	72	17
衣	1.5	-1/

HSZK17 目标区设计地震动参数(阻尼比 5%)

场地 (钻孔)	超越概率	$T_0(\mathbf{s})$	<i>Tg</i> (s)	$A_{\max}(gal)$	β_{\max}	$\alpha_{\rm max}$	γ
	50年63%	0.1	0.30	27.32	2.5	0.068	0.9
HSZK17	50年10%	0.1	0.35	78.42	2.5	0.196	0.9
	50年2%	0.1	0.40	143.58	2.5	0.359	0.9
	100年63%	0.1	0.30	38.84	2.5	0.097	0.9
	100年10%	0.1	0.35	104.16	2.5	0.260	0.9
	100年2%	0.1	0.40	182.92	2.5	0.457	0.9
	100年1%	0.1	0.40	212.24	2.5	0.531	0.9

图 7.3-41 HSZK16 场地 50、100 年不同超越概率(5%阻尼比)地表水平向场地规准反应谱

图 7.3-42 HSZK17 场地 50、100 年不同超越概率(5%阻尼比)地表水平向场地规准反应谱

					(/	
场地 (钻孔)	超越概率	$T_0(\mathbf{s})$	<i>Tg</i> (s)	$A_{\max}(gal)$	$\beta_{ m max}$	$\alpha_{\rm max}$	γ
	50年63%	0.1	0.30	21.75	2.5	0.054	0.9
HSZK18	50年10%	0.1	0.35	76.92	2.5	0.192	0.9
	50年2%	0.1	0.40	144.96	2.5	0.362	0.9
	100年63%	0.1	0.30	34.83	2.5	0.087	0.9
	100年10%	0.1	0.35	101.21	2.5	0.253	0.9
	100年2%	0.1	0.40	176.00	2.5	0.440	0.9
	100年1%	0.1	0.40	210.04	2.5	0.525	0.9

HSZK18 目标区设计地震动参数(阻尼比 5%)

注: $1.\alpha_{max}$ 为最大地震影响系数, $\alpha_{max}=A_{max}$ · β_{max}/g 。 2.g 为重力加速度(1000cm/s²)

表 7.3-19

HSZK19 目标区设计地震动参数(阻尼比 5%)

场地 (钻孔)	超越概率	$T_0(\mathbf{s})$	<i>Tg</i> (s)	$A_{\max}(\text{gal})$	$\beta_{ m max}$	$\alpha_{\rm max}$	γ
	50年63%	0.1	0.30	22.66	2.5	0.057	0.9
HSZK19	50年10%	0.1	0.35	79.26	2.5	0.198	0.9
	50年2%	0.1	0.40	147.48	2.5	0.369	0.9
	100年63%	0.1	0.30	35.78	2.5	0.089	0.9
	100年10%	0.1	0.35	108.56	2.5	0.271	0.9
	100年2%	0.1	0.40	187.45	2.5	0.469	0.9
	100年1%	0.1	0.40	221.97	2.5	0.555	0.9

图 7.3-44 HSZK19 场地 50、100 年不同超越概率(5%阻尼比)地表水平向场地规准反应谱

HSZK20 目标区设计地震动参数(阻尼比 5%)

场地 (钻孔)	超越概率	$T_0(\mathbf{s})$	<i>Tg</i> (s)	$A_{\max}(\text{gal})$	$\beta_{ m max}$	α _{max}	γ
	50年63%	0.1	0.35	23.86	2.5	0.060	0.9
	50年10%	0.1	0.35	83.11	2.5	0.208	0.9
	50年2%	0.1	0.40	157.57	2.5	0.394	0.9
HSZK20	100年63%	0.1	0.35	37.12	2.5	0.093	0.9
	100年10%	0.1	0.35	118.62	2.5	0.297	0.9
	100年2%	0.1	0.40	207.70	2.5	0.519	0.9
	100年1%	0.1	0.40	254.86	2.5	0.637	0.9
	1 1月11日	日ノノナーショ			-11.1	* (1000 / 2)	

注: $1.\alpha_{max}$ 为最大地震影响系数, $\alpha_{max}=A_{max}\cdot\beta_{max}/g$ 。 2.g 为重力加速度(1000cm/s²)

表	7	.3	5-2	1
		-		

HSZK21 目标区设计地震动参数(阻尼比 5%)

场地 (钻孔)	超越概率	$T_0(\mathbf{s})$	<i>Tg</i> (s)	$A_{\max}(\text{gal})$	β_{\max}	$\alpha_{\rm max}$	γ
	50年63%	0.1	0.35	25.82	2.5	0.065	0.9
HSZK21	50年10%	0.1	0.35	79.23	2.5	0.198	0.9
	50年2%	0.1	0.40	141.44	2.5	0.354	0.9
	100年63%	0.1	0.35	39.57	2.5	0.099	0.9
	100年10%	0.1	0.35	107.09	2.5	0.268	0.9
	100年2%	0.1	0.40	169.67	2.5	0.424	0.9
	100年1%	0.1	0.40	204.49	2.5	0.511	0.9

图 7.3-45 HSZK20 场地 50、100 年不同超越概率(5%阻尼比)地表水平向场地规准反应谱

图 7.3-46 HSZK21 场地 50、100 年不同超越概率(5%阻尼比)地表水平向场地规准反应谱

表 7.3-2	22 Н	HSZK22 目标区设计地震动参数(阻尼比 5%)						
场地 (钻孔)	超越概率	$T_0(\mathbf{s})$	<i>Tg</i> (s)	$A_{\max}(gal)$	$eta_{ ext{max}}$	$\alpha_{\rm max}$	γ	
	50年63%	0.1	0.30	27.36	2.5	0.068	0.9	
HSZK22	50年10%	0.1	0.35	83.90	2.5	0.210	0.9	
	50年2%	0.1	0.40	144.19	2.5	0.360	0.9	
	100年63%	0.1	0.30	42.12	2.5	0.105	0.9	
	100年10%	0.1	0.35	112.28	2.5	0.281	0.9	
	100年2%	0.1	0.40	176.97	2.5	0.442	0.9	
	100年1%	0.1	0.40	221.91	2.5	0.555	0.9	

注: $1.\alpha_{max}$ 为最大地震影响系数, $\alpha_{max}=A_{max}\cdot\beta_{max}/g$ 。 2.g 为重力加速度(1000cm/s²)

表	7	.3	-23

HSZK23 目标区设计地震动参数(阻尼比 5%)

场地 (钻孔)	超越概率	$T_0(\mathbf{s})$	<i>Tg</i> (s)	$A_{\max}(\text{gal})$	$\beta_{ m max}$	$\alpha_{\rm max}$	γ
HSZK23	50年63%	0.1	0.30	27.18	2.5	0.068	0.9
	50年10%	0.1	0.35	84.65	2.5	0.212	0.9
	50年2%	0.1	0.40	147.54	2.5	0.369	0.9
	100年63%	0.1	0.30	41.14	2.5	0.103	0.9
	100年10%	0.1	0.35	118.32	2.5	0.296	0.9
	100年2%	0.1	0.40	179.24	2.5	0.448	0.9
	100年1%	0.1	0.40	217.27	2.5	0.543	0.9

图 7.3-48 HSZK23 场地 50、100 年不同超越概率(5%阻尼比)地表水平向场地规准反应谱

HSZK24 目标区设计地震动参数(阻尼比 5%)

场地 (钻孔)	超越概率	$T_0(\mathbf{s})$	<i>Tg</i> (s)	$A_{\max}(\text{gal})$	$\beta_{ m max}$	$\alpha_{\rm max}$	γ		
HSZK24	50年63%	0.1	0.35	27.79	2.5	0.069	0.9		
	50年10%	0.1	0.35	85.67	2.5	0.214	0.9		
	50年2%	0.1	0.40	161.72	2.5	0.404	0.9		
	100年63%	0.1	0.35	43.49	2.5	0.109	0.9		
	100年10%	0.1	0.35	119.09	2.5	0.298	0.9		
	100年2%	0.1	0.40	201.12	2.5	0.503	0.9		
	100年1%	0.1	0.40	248.96	2.5	0.622	0.9		

注: $1.\alpha_{max}$ 为最大地震影响系数, $\alpha_{max}=A_{max}\cdot\beta_{max}/g$ 。 2.g 为重力加速度(1000cm/s²)

HSZK25 目标区设计地震动参数(阻尼比 5%)

场地 (钻孔)	超越概率	$T_0(\mathbf{s})$	<i>Tg</i> (s)	$A_{\max}(\text{gal})$	β_{\max}	$\alpha_{\rm max}$	γ
HSZK25	50年63%	0.1	0.30	24.80	2.5	0.062	0.9
	50年10%	0.1	0.35	74.10	2.5	0.185	0.9
	50年2%	0.1	0.40	136.51	2.5	0.341	0.9
	100年63%	0.1	0.30	37.63	2.5	0.094	0.9
	100年10%	0.1	0.35	101.97	2.5	0.255	0.9
	100年2%	0.1	0.40	167.39	2.5	0.418	0.9
	100年1%	0.1	0.40	217.80	2.5	0.545	0.9

图 7.3-49 HSZK24 场地 50、100 年不同超越概率(5%阻尼比)地表水平向场地规准反应谱

图 7.3-50 HSZK25 场地 50、100 年不同超越概率(5%阻尼比)地表水平向场地规准反应谱

另外,依据目标区设计地震动参数值人工合成场地设计地震动加速度时程,以作为工程结构动力反应分析计算的地震输入。

利用确定的场地设计地震峰值加速度、目标加速度反应谱以及时程强度包络函数参数,按7.1节所述方法进行人工合成场地地面加速度时程。对场地的25个计算点(钻孔)分别合成50年超越概率63%、10%、2%和100年超越概率63%、10%、2%、1%水平下各7个地震加速度时程样本,分别对应七组不同的随机相位。时程采样步长为0.02秒,目标加速度反应谱在0.04~10.0秒内按对数等间距分布原则取60个控制点,合成时程的反应谱与目标反应谱之间的相对误差小于5%。

所拟合的场地设计加速度时程曲线见图 7.3-51 至图 7.3-54。篇幅所限, 每个概率只给出了一条时程样本,且本报告仅展示出各个地块中具代表性 的四个钻孔(HSZK09、HSZK20、HSZK23、HSZK24)拟合图。

图 7.3-51 HSZK09 控制点 50、100 年不同超越概率水平向人工合成加速度时程曲线

265

图 7.3-53 HSZK23 控制点 50、100 年不同超越概率水平向人工合成加速度时程曲线

图 7.3-54 HSZK24 控制点 50、100 年不同超越概率水平向人工合成加速度时程曲线

目标区动参数表中数据综合反映了场地附近一定范围内,地震环境和场地条件对地震动的影响,反映局部场地条件的特性,可作为该目标区抗震设计使用。另外,目标区设计地震参数分布见图 7.3-55 至图 7.3-61。

8 地震地质灾害评价

地震地质灾害是指由地震动或断层错动引起的可能影响场地岩土工程 性能的场地失效现象。不良地质条件的场地,常诱发各种地质灾害。地震 地质灾害主要包括三大类:

由于地震动作用导致的对工程有直接影响的工程场地失效,包括饱和砂土液化、软土震陷等。

由于地震动作用导致的对工程有可能间接影响的工程场地失效,包括岩土崩塌、岩体开裂、岩土滑坡等。

3) 地震断层作用导致的地表错动、地裂缝与地面变形等地质灾害。

根据《工程场地地震安全性评价》等有关规范规定,结合本工程场地 的地形地貌、工程地质、水文地质调查等,对本场地的地震地质灾害进行 综合判定、评价,其次对穿越工程场地或距场地较近的主要断裂的"抗断" 问题进行判定。

8.1 目标区地质环境

地震地质灾害的产生需要特定的环境条件,如地层岩性、地形地貌、 岩体结构和地质构造等都是引发地震地质灾害的环境因素。通过已有资料 收集,并结合野外地质调查和场地勘测,对目标区地震地质灾害环境条件 作如下分析和总结。

8.1.1 地形地貌

目标区整体上分为两个片区,即经济开发区黄金山工业园区和铁山区 西部工业新城。

经济开发区黄金山工业园区位于黄金山南侧,处于黄金山向大冶湖过渡的缓坡地形。其中章山地块(①)主要为第四系堆积平地,在油铺垄和

铁铺脑一带为垄岗地貌,目前场地已场坪; 汪仁地块(②)和四棵地块(③) 主要为黄金山向大冶湖过渡的缓坡,坡度约 8.7‰,靠近黄金山一侧分布有 剥蚀垄岗地貌,目标区所在的大广高速连接线道路以南区域目前均已场坪, 整体上目标区地势平坦。

铁山西部工业新城处在东方山南侧,该目标区现已完成拆迁和场坪, 地势平坦。

8.1.2 地层岩性

根据场地钻探揭露的地层岩性、成因时代结果显示,在场地勘探深度 范围内场地的地层主要以第四系人工堆积层、第四系全新统冲洪积粉质黏 土、古近系 - 白垩系东湖群砂砾岩、三叠系白云质灰岩、奥陶系泥质灰岩、 灰岩、白云岩、志留系粉砂质泥岩、寒武系白云质灰岩、白云岩,部分钻 孔还揭露的玄武岩和花岗闪长岩。各土层的工程地质特征及分布情况描述 详见报告第 6.2.2 节。

8.1.2 水文地质条件

目标区地表水主要为大冶湖水系,大冶湖水面积约为13.53万亩,水源 主要来自降雨,最高蓄水量约为2亿m³。

地下水主要类型有松散堆积层孔隙水、碎屑岩裂隙水等,其中上层滞 水分布于沿线人工填土层中或浅部暗埋沟塘处,主要接受地表排水与大气 降水的补给,上层滞水因其含水层物质成份、密实度、透水性、厚度等不 均一性而导致水量大小不一,水位不连续,无统一自由水面等特征:碎屑 岩裂隙水多赋存于中~微风化基岩裂隙中,其富水程度取决于岩体裂隙中 张开裂隙的发育程度。其它区域地表水主要分布在沟塘、低洼地段,水量 不大。水量一般较贫乏,补给方式主要由上覆含水层下渗补给,其次为有 裂隙连通性较好的基岩直接出露于周边地表水体接受地表水及大气降水补

273

给。

8.1.3 地质构造

根据现场地震地质调查,近东西向大冶湖北缘断裂通过目标区。大冶 湖北缘断裂沿走向未见错断山脊、断层三角面、水系错断等活动断裂的地 貌特征,野外调查表明断层带内构造岩胶结较好,并且在断层可能通过目 标区的位置布设的物探剖面上也无明显断裂构造的显示,结合前人(刘锁 旺等,1989)针对该断裂的构造年代学研究成果,综合认为大冶湖北缘断 裂属于前第四纪活动断裂。

北西向阳新断裂距目标区约 10km;北西向襄樊 - 广济断裂距目标区约 14km;北西向蕲州断裂带距目标区约 18km;北东向麻城 - 团风断裂距目标 区约(铁山地块)21km;北东向巴河断裂距目标区约 37km,上述断裂均为 早 - 中更新世断裂,其余规模较小的断裂均为前第四纪断裂。

8.2 场地地震地质灾害评价

8.2.1 场地砂土液化可能性评估

根据现场勘测资料,目标区内覆盖层以人工填土层和可塑~硬塑状的粉质黏土为主,无饱和可液化土层,因此,可不考虑砂土液化对工程场地的影响。

8.2.2 软土震陷

工程场地地震安全性评价钻孔未揭露有软土层,现场钻探剪切波测试 实验也未检测到平均剪切波波速<90m/s的土层。因此,可以不考虑软土震 陷问题对工程场地的影响。

8.2.3 断裂活动对目标区场地的影响评价

根据现场地震地质调查,近东西向大冶湖北缘断裂通过目标区。经目

标区断层活动性鉴定,大冶湖北缘断裂属于前第四纪活动断裂。

北西向阳新断裂距目标区约 10km;北西向襄樊 - 广济断裂距目标区约 14km;北西向蕲州断裂带距目标区约 18km;北东向麻城 - 团风断裂距目标 区约(铁山地块)21km;北东向巴河断裂距目标区约 37km,上述断裂均为 早 - 中更新世断裂,其余规模较小的断裂均为前第四纪断裂。根据断裂活 动及地震活动特征,目标区具有发生背景地震或中等地震的构造条件。

据《建筑抗震设计规范》(GB50011-2010)之规定:"对符合下列规定 之一的情况可忽略发震断裂错动对地面建筑的影响:

1) 抗震设防烈度小于8度;

2) 非全新世活动断裂;

3) 抗震设防烈度为 8 度和 9 度时前第四纪基岩隐伏断裂的土层覆盖厚度分别大于 60m 和 90m。

目标场地区地震基本烈度为VI度,无活动断层穿过场地,不考虑断层活动错断地表及其对场地区拟建工程的影响。

8.2.4 场地其它地震地质灾害评价

根据现场地质地貌实地调查并结合区域地质资料分析,目标区(经济 开发区黄金山工业园区)处于黄金山向大冶湖过渡的缓坡地带,整体上坡 度约为 8.7‰,靠近黄金山一侧分布有剥蚀垄岗地貌,目前目标区所在的大 广高速连接线以南场地已经场坪,整体上目标区内地势平坦。

目标区(经济开发区黄金山工业园区)北侧龙泉寺山前可见局部有支 护措施的底宽开挖高约15~20m的人工边坡,目前坡体自稳性良好,并未 发生大型滑坡、崩塌等地质灾害。但从整个目标区的规划来看,目标区北 侧基岩区龙泉寺-徐斌村-四连山村-田家湾一带(大广高速连接线以北) 若进行大规模开挖,则需要做好边坡支护,防止边坡失稳和基岩崩塌,并 建议业主在该地区做单独的地质灾害调查,查清场区北侧的地质灾害隐患, 为后续大规模工程施工提供建议。

目标区外侧汪仁镇入口公路旁可见一处临时开挖边坡发生局部小型滑塌,推测其原因是支护格构失去排水功能,坡顶积水不能及时排放,使坡体原有应力改变,稳定性变差所造成。在罕遇地震动作用下,上述两处边坡可能会产生滑塌,建议适当增强支护措施措施防止其失稳。

此外,目标区部分区域下伏基岩为泥质灰岩、灰岩和白云岩,部分钻 孔揭露有岩溶孔洞发育,并且在碳酸盐岩发育区布置的高密度电阻率法物 探剖面解译有岩溶发育。因此,建议在场地岩土工程勘查阶段查清地下岩 溶的发育和分布状况。

8.3 场地地震地质灾害综合评价

依据场址区地形、地貌、地质构造和水文地质等条件,结合钻孔及区 域地震地质资料分析,目标场地区地震地质灾害评价结论如下:

 1)目标区内无液化土、软土分布,可不考虑砂土液化及软土震陷对场 地的影响;

2)目标区内无活动断裂穿过,近场区内无晚更新世以来活动断裂发育, 可不考虑断层活动错断地表及其对拟建建筑物的影响;

3)目标区内地势较为平坦,无崩塌、大型滑坡等自然灾害。但目标区 北侧大广高速连接线以北基岩区高约 10m 的临时开挖边坡,在罕遇地震动 作用下局部可能会发生滑塌,建议采取适当的支护措施。

4)本次目标区工程地质条件勘测的部分钻孔揭露有岩溶孔洞发育,并 且在碳酸盐岩发育区布置的高密度电阻率法物探剖面解译有岩溶发育现象。 建议在岩土工程勘察阶段查清岩溶发育和分布状况。

9 结论及使用说明

9.1 区域地震活动性分析结果

1)自有地震记载以来,区域共发生 M≥4.7级破坏性地震 55次,1900年以前发生破坏性地震 35次;现代地震 1970年以来共记录 M≥2.0级地震
 1888次。目标区所在区域具有中等地震活动水平。

 2)区域内破坏性地震主要在六安-霍山、黄冈-黄石、九江、钟祥等 地相对集中分布,现代地震与破坏性地震空间分布总体特征基本一致。

3)区域地震平均应力场最大主压应力轴方向为 NEE-SWW 向,最大主 张应力轴方向为 NW-SE 向,区域主要断裂以正倾滑破裂为主。

4)区域涉及长江中游地震统计区、郯庐地震统计区、华北平原地震统 计区和长江下游-南黄海地震统计区。各地震统计区地震活动均有明显平 静和活跃交替现象。未来百年内,长江中游地震统计区、郯庐地震统计区 和长江下游南黄海地震统计区地震活动以活跃期水平估计,华北平原地震 统计区地震活动以平均地震活动水平估计。

综合分析表明,区域具有中强地震活动水平,目前处于第二次大的能量释放期的后期,未来百年以地震活跃期水平估计其地震活动趋势,不排除发生 M6.0 级地震的可能性。

9.2 区域地震构造环境评价结果

 1)目标区位于扬子准地台的下扬子台褶带内,与秦岭-大别褶皱系的 桐柏-大别断隆相邻。区域新构造运动的基本特征,主要表现在继承性与 新生性、整体性与差异性、间歇性,新构造运动强度并不强烈。 2)区域上展布有43条区域性大断裂,其中有38条区域性大断裂在早 -中更新世有明显活动,1条(霍山-罗田断裂)在晚更新世活动明显。晚 新生代以来断块边界和不同构造单元分界地带的差异运动鲜明,所涉及的 晚新生代地层的变形轻微,即使是断错变形也不强烈。但区域性大断裂深 部的蠕滑与局部粘滑仍存在,因此低频度较大中等地震在某些特定部位可 能发生,如麻城、霍山等地震事件。

3)区域为华北大震活动区与华南内部少震稳定区之间准稳定过渡地带。 区域性大断裂围限的东大别断块有较为频繁的中等地震(4¾级≤M≤6¼) 活动,江汉-洞庭断陷盆地1631年常德6¾级强烈地震事件序列都显示了 区域准稳定地带的大地构造属性,不具备发生7级以上地震的地震构造条件。

9.3 近场区地震活动性分析与地震构造环境评价结果

1)近场区已知有 4 次破坏性地震记录,分别为 1629 年 4 月湖北黄冈 蕲州间 M4¾级地震、1634 年 3 月 26 日湖北黄冈 M5 级地震、1640 年 9 月 湖北黄冈 M5 级地震以及 1897 年 1 月 5 日湖北阳新 M5 级地震。近场区内 历史地震对对目标区影响最大是 1897 年 1 月湖北阳新 M5 级地震,对目标 区的影响烈度为 VI 度。近场区及近邻地带历史和现代地震活动呈中等偏下 水平。

2)近场区位于扬子准地台与秦岭-大别褶皱系接壤地带。新构造期以
 来,近场区新构造东北、南部升、西降,局部差异性升降的特征,强度中等。

3)近场区内第四纪断裂以北东、北西向为主,其中北西向阳新断裂距目标区约 10km;北西向襄樊-广济断裂距目标区约 14km;北西向蕲州断

278

裂带距目标区约 18km;北东向麻城 - 团风断裂距目标区约(铁山地块)21km; 北东向巴河断裂距目标区约 37km,上述断裂均为早 - 中更新世断裂,其余 为前第四纪断裂。这些断裂上具有发生背景地震、中等地震的构造条件。

9.4 目标区断层勘查与活动性鉴定

目标区发育有近东西向大冶湖北缘断裂,沿走向未见错断山脊、断层 三角面、水系错断等活动断裂的地貌特征,野外调查表明断层带内构造岩 胶结较好,并且在断层可能通过目标区的位置布设的物探剖面上也无错断 Q₂₋₃地层的显示,结合前人(刘锁旺等,1989)针对该断裂的构造年代学研 究成果,综合认为大冶湖北缘断裂属于前第四纪活动断裂。

9.5 地震危险性概率分析结果

以目标区场地钻孔位置为计算控制点,计算得到控制点不同超越概率 水平下地震动参数。对目标区目标区的共计 25 个计算控制点进行危险性分 析计算,计算得到了各点地震危险性超越概率曲线和 50、100 年超越概率 63%、10%、2%和 100 年 1%七个超越概率对应的反应谱;钻孔的基岩水平 向峰值加速度计算结果见表 9.5-1。

目标区计算控制点 50 年 10%超越概率水平的计算结果在 56-59 之间, 考虑场地条件的影响,基岩峰值加速度的计算值与《中国地震动参数区划 图》(GB18306-2015)中给出的目标区平均场地上的地震动分区(0.05g) 符合。

目标区面积相对较小,周边地震构造环境简单,变化不大。对场地基 岩地震动峰值加速度的影响主要来自周边的中等震级潜在震源区和所在的 背景源影响。

地块	编号	钻孔	50 年超越概率			100 年超越概率			
分区		编号	63%	10%	2%	63%	10%	2%	1%
1	1	HSZK18	15.07	56.56	116.70	24.26	79.34	151.91	192.49
章山	2	HSZK19	15.08	56.74	117.40	24.29	79.70	153.31	193.99
地块	3	HSZK20	15.12	57.14	118.12	24.39	80.29	154.54	195.25
	4	HSZK01	18.04	58.72	110.11	27.51	78.95	138.93	169.72
	5	HSZK02	17.80	58.52	109.15	27.50	78.35	137.00	167.66
	6	HSZK03	17.81	58.58	109.72	27.53	78.44	137.14	167.26
	7	HSZK04	17.76	58.33	107.86	27.41	78.04	136.15	166.53
(2) 57.4-	8	HSZK05	17.79	58.47	108.45	27.48	78.24	136.88	166.95
江仁地块	9	HSZK06	17.76	58.32	107.85	27.42	78.03	136.10	165.88
	10	HSZK07	17.68	58.05	106.51	27.28	77.47	134.36	164.27
	11	HSZK08	17.66	57.97	105.92	27.25	77.27	133.66	162.70
	12	HSZK09	18.53	57.92	104.77	27.80	76.85	131.54	159.51
	13	HSZK11	18.54	57.54	104.89	27.81	76.97	132.22	160.42
(3)	14	HSZK10	18.42	57.93	103.80	27.62	76.12	129.43	158.74
	15	HSZK12	18.55	57.92	104.60	27.80	76.79	131.32	159.03
	16	HSZK13	18.37	57.42	102.81	27.70	75.49	127.65	157.96
	17	HSZK14	18.45	57.63	103.76	27.66	76.17	129.21	157.69
四棵	18	HSZK15	18.41	57.50	103.47	27.60	75.86	128.16	157.60
地块	19	HSZK16	18.48	57.72	104.24	27.71	76.36	131.08	158.33
	20	HSZK17	19.00	57.96	104.97	28.37	76.67	132.30	160.66
	21	HSZK24	18.93	57.34	101.42	27.27	75.37	126.37	151.59
	22	HSZK25	18.99	57.36	101.29	27.32	75.35	126.11	151.26
(4)	23	HSZK21	19.72	55.95	96.02	28.62	72.33	117.37	142.06
铁山	24	HSZK22	19.82	56.41	97.18	28.80	73.15	118.67	143.81
地块	25	HSZK23	19.74	55.85	95.86	28.61	72.18	117.22	141.88

表 9.5-1 钻孔基岩水平加速度地震危险性概率分析结果(加速度单位-gal)

对于章山地块,对地震危险性起主要影响的潜源区为场地所在的武穴 (12)6.0级潜在震源区,以及9号5.0级背景源和2号5.5级背景源,其 次为罗田(11)6.0级潜在震源区、潜山(13)6.0级潜在震源区、霍山(10) 6.0级潜在震源区以及4号5.5级背景源; 汪仁地块、四棵地块对地震危险 性起主要影响的潜源区为场地所在的武穴(12)6.0级潜在震源区,以及9 号 5.0 级背景源和 2 号 5.5 级背景源,其次为新洲(7)6.0 级潜在震源区、 罗田(11)6.0 级潜在震源区、潜山(13)6.0 级潜在震源区、咸宁(8)6.0 级潜在震源区以及 4 号 5.5 级背景源;相比汪仁地块、四棵地块,铁山地块 对地震危险性影响最大的潜源区仍为武穴(12)6.0 级潜在震源区,但贡献 率明显减少,而9号背景源影响增大。这一结果与目标区周边地震活动特 征和目标区所处的地震构造环境是协调的。

9.6 目标区地震工程地质条件勘测

 分析已有地质资料,结合地质调查、场地勘察成果以及目标区地形 地貌,重点考虑了可能对地震动的影响效应,将章山地块(①)划分为覆 盖层区和基岩区2两个工程地质单元、汪仁地块(②)划分为覆盖层区和 基岩区2两个工程地质单元、四棵地块(③)和铁山地块(④)划分为覆 盖层区1个工程地质单元。

2)目标区覆盖层区等效剪切波速在156.3~355.8m/s之间,覆盖层厚度 在5.0~26.6m之间,综合判定本目标区覆盖层区场地类别为Ⅱ类。

3)基岩区主要分布于章山地块(①)和汪仁地块(②),其场地内出 露弱风化岩石,参考其周边钻孔揭露相同岩性岩石的剪切波波速,根据《建 筑抗震设计规范》(GB50011-2010)规定的场地类别划分的条件,可确定基 岩区的场地类别为I₁类。

9.7 场地设计地震动参数

根据工程结构抗震设计的要求,计算出目标区地表处地震动反应的加速度时程及其反应谱值。对应于 50 年超越概率 63%、10%、2%和 100 年超越概率 63%、10%、2%、1%的地表反应的水平向地震动峰值加速度的计算 结果见表 9.7-1。
ŧ	071
衣	9./-1

目标区场地土地表的加速度反应峰值(gal)

地块	计符上的品	50	年超越概	率		100 年走	超越概率	
分区	计算点编号 计算点编号 1 (HSZK18) 2 (HSZK19) 3 (HSZK20) 综合推荐值 4 (HSZK01) 5 (HSZK02) 6 (HSZK03) 7 (HSZK04) 8 (HSZK05) 9 (HSZK06) 10 (HSZK07) 11 (HSZK08) 12 (HSZK09) 13 (HSZK11) 综合推荐值 14 (HSZK10) 15 (HSZK12) 16 (HSZK13) 17 (HSZK14) 18 (HSZK15) 19 (HSZK16) 20 (HSZK17) 21 (HSZK24) 22 (HSZK25) 综合推荐值 23 (HSZK21) 24 (HSZK22)	63%	10%	2%	63%	10%	2%	1%
	1 (HSZK18)	21.75	76.92	144.96	34.83	101.21	176.00	210.04
(1) 音 L	2 (HSZK19)	22.66	79.26	147.48	35.78	108.56	187.45	221.97
早山地块	3 (HSZK20)	23.86	83.11	157.57	37.12	118.62	207.70	254.86
- / -	综合推荐值	22.76	79.76	150.00	35.91	109.46	190.38	228.96
	4 (HSZK01)	25.50	81.29	157.08	37.06	113.19	200.20	235.67
	5 (HSZK02)	24.67	78.68	151.63	35.88	112.77	189.51	227.99
	6 (HSZK03)	27.06	82.84	159.22	39.04	115.01	202.18	239.79
	7 (HSZK04)	26.31	80.99	160.67	38.90	115.93	204.39	238.06
2	8 (HSZK05)	26.19	82.46	162.50	39.24	116.42	206.42	241.24
汪仁	9 (HSZK06)	26.59	81.99	161.12	38.55	114.82	201.34	238.54
地块	10 (HSZK07)	25.30	71.41	132.37	35.27	96.09	170.07	200.49
	11 (HSZK08)	24.16	79.64	147.98	36.18	109.09	185.57	233.47
	12 (HSZK09)	27.74	85.34	166.03	42.54	119.56	206.15	236.80
	13 (HSZK11)	26.40	82.86	162.19	39.45	114.47	199.42	238.06
	综合推荐值	25.99	80.75	156.08	38.21	112.74	196.53	233.01
	14 (HSZK10)	27.22	84.18	156.39	41.06	10%2%1%101.21176.00210.04108.56187.45221.97118.62207.70254.86109.46190.38228.96113.19200.20235.67112.77189.51227.99115.01202.18239.79115.93204.39238.06116.42206.42241.24114.82201.34238.5496.09170.07200.49109.09185.57233.47119.56206.15236.80114.47199.42238.06114.47199.42238.06114.47199.42238.06114.43194.62231.81109.02182.74215.33104.44182.26216.97113.84190.45230.30118.22196.83239.4697.86170.78204.17104.16182.92212.24109.05185.46224.12101.97167.39217.80101.97167.39217.80101.97167.39217.80102.28176.97221.91118.32179.24217.27112.56175.29214.56	231.81	
	15 (HSZK12)	26.15	81.50	147.77	38.83	109.02	182.74	215.33
	16 (HSZK13)	25.61	80.51	146.23	39.85	104.44	182.26	216.97
	17 (HSZK14)	27.50	81.82	153.14	40.85	113.84	190.45	230.30
3 	18 (HSZK15)	27.30	85.17	159.56	43.91	118.22	196.83	239.46
山林地块	19 (HSZK16)	24.62	74.19	140.89	36.14	97.86	170.78	204.17
	20 (HSZK17)	27.32	78.42	143.58	38.84	104.16	182.92	212.24
	21 (HSZK24)	27.79	85.67	161.72	43.49	119.09	201.12	248.96
	22 (HSZK25)	24.80	74.10	136.51	37.63	101.97	167.39	217.80
	综合推荐值	26.48	80.62	149.53	40.07	109.26	185.46	224.12
	23 (HSZK21)	25.82	79.23	141.44	39.57	107.09	169.67	204.49
(4) 64 1	24 (HSZK22)	27.36	83.90	144.19	42.12	112.28	176.97	221.91
秋山 地块	25 (HSZK23)	27.18	84.65	147.54	41.14	118.32	179.24	217.27
	综合推荐值	26.79	82.59	144.39	40.94	112.56	175.29	214.56

综合分析场地地震危险性分析结果和土层地震反应分析结果,对场地 上土层反应之后的结果也就是地表的地震动反应谱进行规准作为其场地的 设计地震动参数。确定的各地块场地地表设计地震动参数综合推荐值见表 9.7-2。表中 *A*_{max} 为设计峰值加速度,*β*_{max} 为反应谱放大系数最大值,设计 反应谱平台段起始周期 *T*₀ 为 0.1 秒, *T*_g 为设计反应谱特征周期, *α*_{max} 为地震 影响系数最大值, γ 为反应谱下降段的衰减指数。

表 9.7-2

目标区场地水平向设计反应谱参数(阻尼比 5%)

地块分区	超越概率	$T_0(\mathbf{s})$	Tg(s)	$A_{\max}(gal)$	$\beta_{ m max}$	$\alpha_{\rm max}$	γ
	50年63%	0.1	0.35	22.76	2.5	0.057	0.9
地块分区 超越概率 T ₀ (s) 50年63% 0.1 50年10% 0.1 50年2% 0.1 50年2% 0.1 100年63% 0.1 100年63% 0.1 100年63% 0.1 100年63% 0.1 100年63% 0.1 100年2% 0.1 100年3% 0.1 50年63% 0.1 50年2% 0.1 100年3% 0.1 50年2% 0.1 100年63% 0.1 50年2% 0.1 100年63% 0.1 100年3% 0.1 100年3% 0.1 100年3% 0.1 100年3% 0.1 100年3% 0.1 50年63% 0.1 100年3%	0.1	0.35	79.76	2.5	0.199	0.9	
	\underline{E} \underline{B} \underline{B} $T_0(s)$ $Tg(s)$ $A_{max}(gal)$ β_{max} $a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a_{a$	0.375	0.9				
白山山山	100年63%	0.1	0.35	35.91	2.5	0.090	0.9
平山地次	100年10%	0.1	0.35	109.46	2.5	0.274	0.9
	100年2%	0.1	0.40	190.38	2.5	0.476	0.9
	地块分区 超越概率 T ₀ (50年63% 0. 50年63% 0. 50年10% 0. 50年2% 0. 100年63% 0. 100年63% 0. 100年63% 0. 100年10% 0. 100年10% 0. 100年10% 0. 100年10% 0. 50年63% 0. 50年63% 0. 50年63% 0. 50年2% 0. 100年63% 0. 50年2% 0. 100年63% 0. 100年10% 0. 100年3% 0. 100年3% 0. 100年63% 0. 100年63% 0. 100年63% 0. 100年63% 0. 100年10% 0. 100年10% 0. 100年63% 0. 50年63% 0. 50年63% 0. 50年63% 0.	0.1	0.40	228.96	2.5	0.572	0.9
	50年63%	0.1	0.35	25.99	2.5	0.065	0.9
① 章山地块 ② 注仁地块 ③ 课地块	50年10%	0.1	0.35	80.75	2.5	0.202	0.9
	50年2%	0.1	0.40	156.08	2.5	0.390	0.9
(2) 汪仁地址	100年63%	0.1	0.35	38.21	2.5	0.096	0.9
② 注仁地块 $50 \neq 2\%$ 0.10.40156.100 年 63%0.10.3538.2100 年 10%0.10.35112.100 年 2%0.10.40196.100 年 1%0.10.40233.50 年 63%0.10.3526.450 年 10%0.10.3580.650 年 2%0.10.40149.100 年 63%0.10.3540.6	100年10%	0.1	0.35	112.74	2.5	0.282	0.9
	100年2%	0.1	0.40	196.53	2.5	0.491	0.9
	233.01	2.5	0.583	0.9			
	50年63%	0.1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.5	0.066	0.9	
① ① 章山地块 50年63% 0.1 0.35 22.76 2.5 50年10% 0.1 0.35 79.76 2.5 50年2% 0.1 0.40 150 2.5 50年2% 0.1 0.40 150 2.5 100年63% 0.1 0.35 35.91 2.5 100年1% 0.1 0.40 190.38 2.5 100年1% 0.1 0.40 228.96 2.5 50年63% 0.1 0.35 80.75 2.5 50年63% 0.1 0.35 80.75 2.5 50年2% 0.1 0.40 156.08 2.5 100年63% 0.1 0.35 38.21 2.5 100年63% 0.1 0.35 38.21 2.5 100年1% 0.1 0.40 196.53 2.5 100年1% 0.1 0.35 80.62 2.5 100年63% 0.1 0.35 40.07 2.5 100年63%	2.5	0.202	0.9				
	50年2%	0.1	0.40	5 22.76 2.5 0.057 0.9 5 79.76 2.5 0.199 0.9 0 150 2.5 0.375 0.9 5 35.91 2.5 0.090 0.9 5 109.46 2.5 0.274 0.9 0 190.38 2.5 0.476 0.9 0 190.38 2.5 0.572 0.9 5 25.99 2.5 0.065 0.9 5 25.99 2.5 0.065 0.9 5 80.75 2.5 0.202 0.9 0 156.08 2.5 0.390 0.9 5 38.21 2.5 0.096 0.9 5 112.74 2.5 0.282 0.9 0 196.53 2.5 0.491 0.9 0 233.01 2.5 0.202 0.9 0 149.53 2.5 0.202 0.9 0 149.53 2.5 0.273 0.9 0 149.53 2.5 0.273 0.9 0 185.46 2.5 0.273 0.9 0 224.12 2.5 0.266 0.9 5 82.59 2.5 0.206 0.9 5 82.59 2.5 0.266 0.9 0 144.39 2.5 0.102 0.9 5 40.94 2.5 0.281 0.9 0 175.29 2.5 0.438 0.9			
3 四棵地址	100年63%	0.1	0.35	40.07	2.5	0.100	0.9
	100年10%	0.1	0.35	109.26	2.5	0.273	0.9
	100年2%	0.1	0.40	185.46	2.5	0.464	0.9
	100年1%	0.1	0.40	224.12	2.5	0.560	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	50年63%	0.1	0.35	26.79	2.5	0.067	0.9
	50年10%	0.1	0.35	82.59	2.5	0.206	0.9
	50年2%	0.1	0.40	144.39	2.5	0.361	0.9
4	100年63%	0.1	0.35	40.94	2.5	0.102	0.9
NHIN	100年10%	0.1	0.35	112.56	2.5	0.281	0.9
	100年2%	0.1	0.40	175.29	2.5	0.438	0.9
	100年1%	0.1	0.40	214.56	2.5	0.536	0.9

注: 1.α_{max} 为最大地震影响系数, α_{max}=A_{max}·β_{max}/g; 2.g 为重力加速度(1000cm/s²)

9.8 场地地震地质灾害评价结果

 1)目标区内无液化土、软土分布,可不考虑砂土液化及软土震陷对场 地的影响。

 2)目标区无活动断裂穿过,近场区内无晚更新世以来活动断裂发育, 可不考虑断层活动错断地表及其对拟建建筑物的影响;

3)目标区内地势较为平坦,无崩塌、大型滑坡等自然灾害。但目标区 北侧大广高速连接线以北基岩区高约 10m 的处临时开挖边坡,在罕遇地震 动作用下局部可能会发生滑塌,建议采取适当的支护措施。

4)本次场地工程地质条件勘测的部分钻孔揭露有岩溶孔洞发育,并且 在碳酸盐岩发育区布置的高密度电阻率法物探剖面解译有岩溶发育。建议 在岩土工程勘察阶段查清岩溶发育和分布状况。

9.9 使用说明

本报告给出的 50 年超越概率 10%的地震动参数区域性地震安全性
 评价结果可作为编制黄石经济技术开发区·铁山区黄金山工业园区和西部
 工业新城城市防震减灾规划和城市发展规划的依据。

2)本报告给出的 50 年超越概率 10%的地震动参数区域性地震安全性 评价结果适用于黄石经济技术开发区·铁山区黄金山工业园区和西部工业 新城新建、扩建、改建的一般建设工程的抗震设防。

3)本报告给出的 50 年超越概率 63%和 2%的地震动参数区域性地震 安全性评价结果适用于需要进行强度验算和变形验算的一般建设工程。

4)如果目标区详细勘察结果表明该场地土动力参数与该分区场地土动力参数有明显差异时,应复核确定该场地的地震动参数。

5)区域性地震安全性评价工作的工程地震钻孔密度相对较小,重大建

设工程和可能发生严重次生灾害的建设工程,其抗震设计参数应进行专门研究。

6)目标区存在岩溶孔洞等不良地质现象。因此按照相关规范,建议进行工业园区地质灾害危险性评估、场地详细勘察和相关防治工作。当工业园区区域规划发生调整变化,应进行重新评估。

7)在工业园区后期建设及使用过程中,目标场地中不同地点的实际建设的建筑参考的设计地震动参数应以其最邻近的计算控制点(钻孔)的数据为准。

8)基岩区的设计地震动参数应参考所在地块基岩水平向峰值加速度最 大值及其对应数据。

10 成果查询系统编制及说明

10.1 界面及功能介绍

10.1.1 程序界面

程序启动主界面如图 10.1-1,操作界面顶端为操作工具栏,中间为查询 系统结果显示区,底端为状态栏。

图 10.1-1 查询系统操作界面

10.1.2 工具栏说明

本程序工具栏分为以下几个栏目:

1) 首页

用于返回首页,查看项目区底图,目标区位置坐标等相关信息。

2) 查询

用于查询坐标点的相关区域性地震安评成果,可以通过坐标查询、点 选查询 2 种方法进行查询,坐标查询为直接输入查询点经纬度,点选查询 为用鼠标直接在底图上进行点选。此外还可通过查询下文件浏览对真个区 域性地震安评项目进行浏览。

3) 人工时程

通过查询目标点坐标后,可查询目标点人工时程信息。

4) 设计反应谱参数

通过查询目标点坐标后,可查询目标点设计反应谱参数。

5) 基岩水平向反应谱及标准谱

通过查询目标点坐标后,可查询目标点基岩水平向反应谱及标准谱。

6) 钻孔

通过查询目标点坐标后,可查询目标点钻孔信息,包括钻孔柱状图、 钻孔岩芯照片、钻孔剪切波测试成果。

7) 地震工程地质条件

通过查询目标点坐标后,可查询目标点地震工程地质条件,场地类别。

8) 地震构造图件

可查询目标区近场区地震构造图及区域地震构造图。

10.2 操作说明

本程序支持两种查询方式,坐标查询为直接输入查询点经纬度,点选 查询为用鼠标直接在底图上进行点选。此外还可通过查询下文件浏览对真 个区域性地震安评项目进行浏览。

只有在工具栏"查询"在确定目标点坐标后,方可点击工具栏3)~8)进行相关信息查询。

当查询区域性地震安评成果格式为图片的时,可点击成果显示区右上 角4个图标对图件进行放大、缩小、最大、适合操作。

10.3 特别提醒

1)输出 Excel 文件需要计算机装有 Excel 软件,如未装将不能输出;
 2)查询系统坐标格式为度,若格式为"度分秒"或"度分",请转换后输入。

参考文献

中国地震局地质研究所,长江三峡勘测研究院有限公司(武汉),云南省丽江市南瓜坪水库工程场地

地震安全性评价报告,2018

高孟谭,《<中国地震动参数区划图>宣贯教材》,中国质检出版社,中国标准出版社,2015

高锡铭等,长江三峡及邻区构造应力场和震源错动类型的研究,地壳形变与地震,1994

国家地震局震害防御司,《中国历史强震目录》(公元前23世纪至公元1911年)(MS≥4),地震出版

社, 1995;

中国地震局地质研究所,武汉地震工程研究院.湖北省浠水核电厂址地震地质调查与地震安全性评价报告,2006

武汉地震工程研究院. (鄂州市)国际物流枢纽工程场地地震安全性评价报告,2006

胡聿贤,《地震安全性评价技术教程》,地震出版社,1999

黄玮琼等,中国大陆地震资料完整性研究之二——分区地震资料基本完整的起始年分布图象,地震

学报,1994

霍俊荣,地面运动时程强度与包络函数的研究,地震工程与工程振动,2015

李尔超,强度包络函数参数不确定性对土层地震反应影响研究,2015

李尔超,强度包络函数参数不确定性对土层地震反应影响研究,中国地震局工程力学研究所,2015

李蓉川,鄂豫皖地区的震源机制与应力场,地震研究,1984

李蓉川等,湖北及邻区现代构造应力场初析,西北地震学报,1984

李细光等,武汉一信阳地区现今构造应力场的初步研究,西北地震学报,2004

林建生,场地地震安全性评价中确定设计地震动参数方面若干问题的研究,世界地震工程,2006 刘艳春,等.土层反应分析中基岩输入面的深度对结果影响的分析,山西建筑,2016

陶小三, 地震安全性评价中时程强度包络函数的影响分析, 地球科学前沿, 2014

汪素云等,基于中国地震台网观测报告的 ML 与 MS 经验关系,中国地震,2010

汪素云等,中国东部大陆的地震构造应力场,地震学报,1985

王学军,用土层地震反应分析方法确定地震动参数的探讨,科技传播 2011

魏光兴等,华北地区中小地震应力场的优势方向,地球物理学报,1982

谢富仁等,全球应力场与构造分析,地学前缘,2003

谢富仁等,中国大陆地壳应力环境基础数据库,地球物理学进展,2007

谢毓寿、蔡美彪,等,《中国地震历史资料汇编》,1-5卷,科学出版社,1983.;

熊继平等,《湖北地震史料汇考》,地震出版社,1986;

云南省地震工程勘察院, 金沙江乌东德水电站工程场地地震安全性评价报告, 2015

张美玲,中国大陆地区地震动时程强度包络函数研究,地震工程与工程振动,2015

中国地震局震害防御司,《中国近代地震目录》(公元 1912 年至 1990 年 MS≥4.7),中国科学技术出

版社, 1999;

Cornell C. A. et al., Engineering seismic risk analysis, Bulletin of the Seismological Society of America, 1968

黄石经济技术开发区·铁山区区域性地震安全性评价项目

说明

1、A-A'测线全长900米; B-B'测线全长 300米; C-C'测线全长450米;D-D'测线全 长300米; E-E'测线全长750米; F-F'测线 全长300米; G-G'测线全长1500米; H-H'测线全长450米; I-I测线全长1050 米; J-J'测线全长900米; K-K'测线全长 600米。高密度测线长度共计7800米。 2、装置类型为温纳装置,最小电极距5 米,一次布设60道,最大隔离系数19,采 用滚动测量方式,每次滚动30道电极。 3、系统检查观测900m,总工作量的 11.5%,检查观测均方相对误差3.08%。

	长江三峡勘测研究院有限公司(武汉)											
核准					设计							
核定					部分							
审查		方战斗	2019.12	黄石经济技术开发区·铁山区								
校核		痔梎 国	2019.12	区域性地震安全性评价项目								
设计	周	羊 賀赤滅	2019.12	经济技术开发区片区钻孔布置								
制图		クション	2019.12	及高密。	度电阻率法剖面布设图							
比例		1:25000		日期	2019.12							
勘测证	E号	B1420157	717	图号	01							
声明	1:未 我	经授权,不 公司将保留	「得翻印 追究其注	(录)、传排 去律责任的权	番或他用,对于侵权行为 Q利。							

黄石经济技术开发区・铁山区区域性地震安全性评价项目 铁山区片区钻孔布置及高密度电阻率法测线布置图 500m () 比例尺

工程地质剖面位置

说明

1、L-L'测线全长300米。2、装置类型为 温纳装置,最小电极距5米,一次布设60 道,最大隔离系数19,采用滚动测量方式,

3、系统检查观测900m,总工作量的

11.5%, 检查观测均方相对误差3.08%。

亥准					设计							
亥定					部分							
审查		方钱	2019.12	黄石经济技术开发区·铁山区								
交核		涛艳国	2019.12	区域	性地震安全性评价项目							
殳 计	周	年 賀赤滅	2019.12	铁山区片区钻孔布置								
削图		クジャン	2019.12	及高密	度电阻率法剖面布设图							
北例		1:12500		日期	2019.12							
劫测证	E号	B1420157	717	图号	02							
声明	声明:未经授权,不得翻印(录)、传播或他用,对于侵权行为 我公司将保留追究其法律责任的权利。											

长江三峡勘测研究院有限公司(武汉)

黄石经济开发区・铁山区区域性地震安全性评价项目

反演电阻率(Ω·m)

说明

1、装置类型为温纳装置,最小电极距5米,一次布设60道, 最大隔离系数19,滚动测量,每次滚动30道电极。

、反演采用RES2DINV软件提供的最小二乘法算法进行反 演,迭代次数5,A-A'测线迭代均方根误差1.7%。

3、系统检查观测占总工作量的11.5%,检查观测均方相差误 差2.08%。

4、根据电阻率反演断面与已有地质资料推断得出物探地质 解译图,具体情况详见左侧图。

	长江三峡勘测研究院有限公司(武汉)											
核准					设计							
核定					部分							
审查	, ,	纺斧	2019.12	黄石经济开发区·铁山区								
校核		焙炖困	2019.12	区域性地震安全性评价项目								
设计	周	衤 賀赤滅	2019.12	高密度电阻率法A-A'测线探测成果图								
制图		クジャ	2019.12									
比例		1:1000		日期	2019.12							
勘测订	E号	B1420157	717	图号 03								
声明]: 未 我	经授权,不 公司将保留	得翻印 追究其注	(录)、传播 去律责任的权	播或他用,对于侵权行为 2利。							

黄石经济开发区·铁山区区域性地震安全性评价项目 高密度电阻率法B-B'测线探测成果图

1、装置类型为温纳装置,最小电极距5米,一次布设60道, 最大隔离系数19,滚动测量,每次滚动30道电极。

2、反演采用RES2DINV软件提供的最小二乘法算法进行反

演,迭代次数5,B-B'测线迭代均方根误差2.85%。

3、系统检查观测占总工作量的11.5%,检查观测均方相差误

4、根据电阻率反演断面与已有地质资料推断得出物探地质

长江三峡勘测研究院有限公司(武汉)											
核准				设计							
核定			部合								
审查·	方钱年	2019.12	黄石	F经济开发区·铁山区							
校核	馬乾国	2019.12	区域性地震安全性评价项目								
设计	周洋 賀赤城	2019.12	喜密度由阳率注B B'测线探测战里图								
制图	∕ } ₅ x	2019.12	间面反电阻	1年云1日初以休烦风不回							
比例	1:1000		日期	2019.12							
勘测证	E号 B142015	717	图号	04							
声明]:未经授权,不 我公司将保留	得翻印 追究其注	(录)、传捕 去律责任的权	番或他用,对于侵权行为 Z利。							

我公司将保留追究其法律责任的权利。

黄石经济开发区·铁山区区域性地震安全性评价项目 高密度电阻率法D-D'测线探测成果图 10 20 80米 高程(m) 反演电阻率(Ω·m) -10-20 I 280 距离(m) 高程(m) 0° $K_2 - E dn$ -10该反演断面基本可分为两个电性层,第一层深度范围为地表至地下约8m,为覆盖层,其特征为电性横向分布不均匀,局部表现为相对高阻。第二层深度 物探及地 | 范围为地下8m至40m左右,反演电阻率一般约20~30Ω·m,电性较均匀,推断为含砾砂岩,胶结一般,岩层较松散,孔隙较大,富水性良好,电阻率整体偏 质解释 低。 断面上无明显断层反映。

1、装置类型为温纳装置,最小电极距5米,一次布设60道, 最大隔离系数19,滚动测量,每次滚动30道电极。

2、反演采用RES2DINV软件提供的最小二乘法算法进行反

演,迭代次数5,D-D'测线迭代均方根误差2.64%。

3、系统检查观测占总工作量的11.5%,检查观测均方相差误 差2.08%。

4、根据电阻率反演断面与已有地质资料推断得出物探地质 解译图,具体情况详见左侧图。

	长江三峡勘测研究院有限公司(武汉)												
核准					设计								
核定					部分								
审查:	な	浙	2019.12	黄石	5经济开发区·铁山区								
校核	퍳	地国	2019.12	区域性地震安全性评价项目									
设计	周泽	加升点	2019.12	言密度中阳恋注D D'测线探测出里图									
制图	-)»»	2019.12	同G反电阻平公D-D 则线休则成木									
比例		1:1000		日期	2019.12								
勘测证	E号	B1420157	'17	图号	06								
声明	: 未約 我公	^{经授权,不} 公司将保留	得翻印 追究其注	(录)、传排 去律责任的权	衝或他用,对于侵权行为 ₹利。								

率一般约50~100Ω·m,主要原因为碎石含量较高,且不饱水,推断的整体覆盖层厚度约8m。 《较松散,孔隙较大,富水性良好,电阻率整体偏低。在测线240~340m有局部高阻异常,反演	反演电阻率横向 变化,推断为着 性分界面
--	----------------------------

	长江三峡勘测研究院有限公司(武汉)												
核准						设计							
核定						部分							
审查	7	分战	2	2019.12	黄石经济开发区·铁山区								
校核		房艳	I	2019.12	区域性地震安全性评价项目								
设计	同	¥ 4	赤诚	2019.12	[[京 密 唐 由 阳 涵 法 日 日 测 线 抠 测 战 里 困								
制图		クジョン	A .	2019.12	同省反电阻平云已已则线抹烟成木肉								
比例		1:	1000		日期	2019.12							
勘测证	E号	B1-	420157	717	图号	07							
声明]:未 我	经授 公司 [×]	权,不 将保留	得翻印 追究其》	(录)、传捕 去律责任的权	番或他用,对于侵权行为 Z利。							

1、装置类型为温纳装置,最小电极距5米,一次布设60道,

最大隔离系数19。 2、反演采用RES2DINV软件提供的最小二乘法算法进行反

演,迭代次数5,F-F'测线迭代均方根误差2.64%。

3、系统检查观测占总工作量的11.5%,检查观测均方相差误 差4.22%。

4、根据电阻率反演断面与已有地质资料推断得出物探地质 解译图,具体情况详见左侧图。

	长江三峡勘测研究院有限公司(武汉)											
核准					设计							
核定					部分							
审查:	7	锅午	2019.12	黄石经济开发区·铁山区								
校核	J	房艳国	2019.12	区域性地震安全性评价项目								
设计	周3	辛 賀禾城	2019.12	喜密度由阳率注F-F'测线探测战里图								
制图		オジチ	2019.12	间位反电位	1十四1-1 网络休闲风不凶							
比例		1:1000		日期	2019.12							
勘测证	E号	B1420157	'17	图号	08							
声明	l: 未 我	经授权,不 公司将保留	得翻印 追究其注	(录)、传报 去律责任的权	播或他用,对于侵权行为 2利。							

ΤΓΓ				///	///	TT	TT				7_7_	6-1		1-6-				7.7		1_1_1_	0.00	
		00				0	. 0				. 0		0		.0	0.				. <u>.</u>	(
	. 0.			. 0.	0		0	0.0		0					0				0	0		0.00
		E dnoi	00				0 0		0				0			<u> </u>	0	0			0.0	
	••••• ⁿ 2				·····	0					0.0				0		<u> </u>			0	0	0
0			0.0		0.			0.00		0				0	. 0		0		0.0			0 .
		<u> </u>	.0.	<u> </u>	·····			. 0			0					.0		<u>)</u>				
	··· /			- ···																		
	000	020	040	060	080	1000	1020	1040	1060	1090	1100	1190	1140	1160	1190	1200	1990	1940	1960	1990	1200	1220
880	900	920	940	960	980	1000	1020	1040	1000	1080	1100	1120	1140	1100	1180	1200	1220	1240	1260	1280	1300	1320

1、装置类型为温纳装置,最小电极距5米,一次布设60道, 最大隔离系数19。采用滚动测量方式,每次滚动30道电极。 2、反演采用RES2DINV软件提供的最小二乘法算法进行反 演,迭代次数5,H-H'测线迭代均方根误差3.85%。 3、系统检查观测占总工作量的11.5%,检查观测均方相差误 差4.22%。 4、根据电阻率反演断面与已有地质资料推断得出物探地质 解译图,具体情况详见左侧图。

长江三峡勘测研究院有限公司(武汉)						
核准				设计		
核定					部分	
审查:	た	游车	2019.12	黄石经济开发区·铁山区		
校核	<u>بر</u>	和国	2019.12	区域性地震安全性评价项目		
设计	周洋	贺赤鸿	2019.12	这一点这一时这 次日日,则先还则出国区		
制图		ろうみ	2019.12	同省反屯田平太11-11 网络抹烟放木		
比例	1:1000		日期	2019.12		
勘测证号 B142015717		图号	10			
声明:未经授权,不得翻印(录)、传播或他用,对于侵权行为 我公司将保留追究其法律责任的权利。						

黄石经济开发区・铁山区区域性地震安全性评价项目 高密度电阻率法J-J'测线探测成果图

反演电阻率(Ω·m)

说明

装置类型为温纳装置,最小电极距5米,一次布设60道, 最大隔离系数19。采用滚动测量,每次滚动30道电极。 、反演采用RES2DINV软件提供的最小二乘法算法进行反 演,迭代次数5,J-J'测线迭代均方根误差3.28%。 3、系统检查观测占总工作量的11.5%,检查观测均方相差误 差4.22%。 4、根据电阻率反演断面与已有地质资料推断得出物探地质

解译图,具体情况详见左侧图。

 860	880	

下江二映剧烈研究阮有限公司(武汉)						
核准					设计	
核定					部分	
审查.	大約 20		2019.12	黄石经济开发区、铁山区		
校核	馬乾国		2019.12	区域性地震安全性评价项目		
设计	周洋 驾赤城		2019.12	高密度电阻率法J-J'测线探测成果		
制图	7,534		2019.12			
比例	1:1000		日期	2019.12		
勘测证	E号 B142015717		图号	图号 12		
声明:未经授权,不得翻印(录)、传播或他用,对于侵权行为 我公司将保留追究其法律责任的权利。						

长江三岐地测团农院专用八司(书汉)

黄石经济开发区·铁山区区域性地震安全性评价项目 高密度电阻率法K-K'测线探测成果图

长江三峡勘测研究院有限公司(武汉)							
核准				设计			
核定					部分		
审查:	7	钠	2019.12	黄石经济开发区·铁山区			
校核	,	房艳国	2019.12	区域性地震安全性评价项目			
设计	周3	衤 賀赤碱	2019.12	言密府由阳家汁V V 测线探测出用质			
制图		ノジッチ	2019.12	同省反电阻平法 ~~ 网络抹厕成木			
比例	1:1000		日期	2019.12			
勘测证号 B142015717			717	图号	13		
声明:未经授权,不得翻印(录)、传播或他用,对于侵权行为 我公司将保留追究其法律责任的权利。							

黄石经济开发区·铁山区区域性地震安全性评价项目 高密度电阻率法L-L'测线探测成果图 80 米 10 20 60° < 高程(m) 40 n 反演电阻率 (Ω·m) 280 距离(m) 60° < 高程(m) 40. 覆盖层 距离 该反演断面基本可分为两个电性层,第一层深度范围为地表至地下约10m,为覆盖层,其电性特征为低阻,反演电阻率小于100Ω·m。第二层深度 物探及地 范围为地下10m至45m左右,反演电阻率大于1000Ω·m,电性较均匀,结合钻探成果资料推断为白云质灰岩。 质解释 断面上无明显断层反映。

冬

例

长江三峡勘测研究院有限公司(武汉)						
核准					设计	
核定					部分	
审查·	7	紛行	2019.12	黄石经济开发区·铁山区		
校核	J	痔乾国	2019.12	区域性地震安全性评价项目		
设计	周兴	羊 賀赤城	2019.12	高密度电阻率法L-L'测线探测成果图		
制图		クジャ	2019.12			
比例	1:1000			日期	2019.12	
勘测证	勘测证号 B142015717		图号 14			
声明:未经授权,不得翻印(录)、传播或他用,对于侵权行为 我公司将保留追究其法律责任的权利。						

汪仁地块钻孔岩芯照片 ZK1 钻孔岩芯照片

黄石经济技术开发区•铁山区地震安评 HSZK01 孔深10.00~15.00m 第3/4箱

ZK2 钻孔岩芯照片

黄石经济技术开发区·铁山区地震安评 HSZK02 孔深10.00~15.00m 第3/4箱

黄石经济技术开发区•铁山区地震安评 HSZK03 孔深10.00~14.90m 第3/5箱

黄石经济技术开发区•铁山区地震安评 HSZK03 孔深19.90~24.50m 第5/5箱

ZK3 钻孔岩芯照片

黄石经济技术开发区•铁山区地震安评 HSZK03 孔深5.00~10.00m 第2/5箱

ZK4 钻孔岩芯照片

黄石经济技术开发区•铁山区地震安评 HSZKO4 孔泽10.10~15.00m 第3/3箱

黄石经济技术开发区•铁山区地震安评 HSZK04 孔深5.00~10.10m 第2/3箱

ZK5 钻孔岩芯照片

ZK6 钻孔岩芯照片

黄石经济技术开发区•铁山区地震安评 HSZK06 孔深10.10~15.10m 第3/4箱

黄石经济技术开发区•铁山区地震安评 HSZK06 孔深5.00~10.10m 第2/4箱

ZK7 钻孔岩芯照片

黄石经济技术开发区•铁山区地震安评 HSZK10 孔深5.00~7.90m 第2/2箱

ZK8 钻孔岩芯照片

黄石经济技术开发区·铁山区地震安评 HSZK08 孔深0.00~5.00m 第1/6箱

黄石经济技术开发区·铁山区地震安评 HSZK08 孔深10.00~15.00m 第3/6箱

黄石经济技术开发区·铁山区地震安评 HSZK08 孔深20.00~25.00m 第5/6箱

黄石经济技术开发区·铁山区地震安评 HSZK08 孔深5.00~10.00m 第2/6箱

黄石经济技术开发区·铁山区地震安评 HSZK08 孔深15.00~20.00m 第4/6箱

黄石经济技术开发区·铁山区地震安评 HSZK08 孔深25.00~32.50m 第6/6箱

ZK9 钻孔岩芯照片

黄石经济技术开发区•铁山区地震安评 HSZK09 孔深10.10~15.00m 第3/7箱

黄石经济技术开发区•铁山区地震安评 HSZK09 孔深20.00~25.00m 第5/7箱

黄石经济技术开发区•铁山区地震安评 HSZK09 孔深30.00~34.50m 第7/7箱

黄石经济技术开发区•铁山区地震安评 HSZK09 孔深5.00~10.10m 第2/7箱

黄石经济技术开发区•铁山区地震安评 HSZK09 孔深15.00~20.00m 第4/7箱

黄石经济技术开发区•铁山区地震安评 HSZK09 孔深25.00~30.00m 第6/7箱

ZK11 钻孔岩芯照片

黄石经济技术开发区·铁山区地震安评 HSZK11 孔深10.00~15.00m 第3/3箱

黄石经济技术开发区·铁山区地震安评 HSZK11 孔深5.00~10.00m 第2/3箱

四棵地块钻孔岩芯照片 ZK10 钻孔岩芯照片

黄石经济技术开发区•铁山区地震安评 HSZK10 孔深0.00~5.00m 第1/6箱

黄石经济技术开发区•铁山区地震安评 HSZK10 孔深10.00~15.10m 第3/6箱

黄石经济技术开发区•铁山区地震安评 HSZK10 孔深20.00~26.80m 第5/6箱

黄石经济技术开发区•铁山区地震安评 HSZK10 孔深5.00~10.00m 第2/6箱

黄石经济技术开发区•铁山区地震安评 HSZK10 孔深15.10~20.00m 第4/6箱

黄石经济技术开发区•铁山区地震安评 HSZK10 孔深26.80~32.00m 第6/6箱

ZK12 钻孔岩芯照片

黄石经济技术开发区·铁山区地震安评 HSZK12 孔深5.00~10.00m 第2/4箱

黄石经济技术开发区·铁山区地震安评 HSZK12 孔深15.00~20.80m 第4/4箱

ZK13 钻孔岩芯照片

黄石经济技术开发区•铁山区地震安评 HSZK13 孔深10.00~14.90m 第3/7箱

黄石经济技术开发区•铁山区地震安评 HSZK13 孔深14.90~20.00m 第4/7箱

黄石经济技术开发区•铁山区地震安评 HSZK13 孔深20.00~25.00m 第5/7箱

黄石经济技术开发区•铁山区地震安评 HSZK13 孔深30.00~34.30m 第7/7箱

黄石经济技术开发区•铁山区地震安评 HSZK13 孔深25.00~30.00m 第6/7箱

ZK14 钻孔岩芯照片

黄石经济技术开发区•铁山区地震安评 HSZK14 孔深0.00~5.00m 第1/4箱

黄石经济技术开发区•铁山区地震安评 HSZK14 孔深10.50~19.50m 第3/4箱

黄石经济技术开发区•铁山区地震安评 HSZK14 孔深5.00~10.50m 第2/4箱

黄石经济技术开发区•铁山区地震安评 HSZK14 孔深19.50~26.90m 第4/4箱

ZK15 钻孔岩芯照片

黄石经济技术开发区•铁山区地震安评 HSZK15 孔深0.00~5.00m 第1/5箱

黄石经济技术开发区•铁山区地震安评 HSZK15 孔深10.00~16.80m 第3/5箱

黄石经济技术开发区•铁山区地震安评 HSZK15 孔深22.90~25.00m 第5/5箱

黄石经济技术开发区•铁山区地震安评 HSZK15 孔深5.00~10.00m 第2/5箱

黄石经济技术开发区•铁山区地震安评 HSZK15 孔深16.80~22.90m 第4/5箱

黄石经济技术开发区•铁山区地震安评 HSZK15 孔深22.90~31.50m 第5/5箱

黄石经济技术开发区·铁山区地震安评 HSZK16 孔深0.00~5.00m 第1/4箱

黄石经济技术开发区·铁山区地震安评 HSZK16 孔深5.00~10.00m 第2/4箱

黄石经济技术开发区·铁山区地震安评 HSZK16 孔深10.00~15.00m 第3/4箱

ZK17 钻孔岩芯照片

黄石经济技术开发区•铁山区地震安评 HSZK17 孔深10.00~15.20m 第3/3箱

ZK24 钻孔岩芯照片

黄石经济技术开发区·铁山区地震安评 HSZK16 孔深15.00~20.20m 第4/4箱

黄石经济技术开发区·铁山区地震安评 HSZK24 孔深10.00~15.00m 第3/7箱

黄石经济技术开发区·铁山区地震安评 HSZK24 孔深20.00~25.00m 第5/7箱

黄石经济技术开发区·铁山区地震安评 HSZK24 孔深30.00~35.00m 第7/7箱

黄石经济技术开发区·铁山区地震安评 HSZK25 孔深20.00~25.00m 第5/8箱

黄石经济技术开发区·铁山区地震安评 HSZK25 孔深30.00~35.00m 第7/8箱

黄石经济技术开发区·铁山区地震安评 HSZK25 孔深25.00~30.00m 第6/8箱

黄石经济技术开发区·铁山区地震安评 HSZK25 孔深35.00~42.20m 第8/8箱

章山地块钻孔岩芯照片 ZK18 钻孔岩芯照片

黄石经济技术开发区·铁山区地震安评 HSZK18 孔深0.00~5.00m 第1/3箱

黄石经济技术开发区·铁山区地震安评 HSZK18 孔深10.00~16.50m 第3/3箱

黄石经济技术开发区·铁山区地震安评 HSZK18 孔深5.00~10.00m 第2/3箱

ZK19 钻孔岩芯照片

黄石经济技术开发区·铁山区地震安评 HSZK19 孔深10.00~15.00m 第3/4箱

ZK20 钻孔岩芯照片

黄石经济技术开发区·铁山区地震安评 HSZK20 孔深10.00~15.00m 第3/4箱

铁山地块钻孔岩芯照片 ZK21 钻孔岩芯照片

黄石经济技术开发区•铁山区地震安评 HSZK21 孔深0.00~5.10m 第1/5箱

黄石经济技术开发区•铁山区地震安评 HSZK21 孔深10.10~15.10m 第3/5箱

黄石经济技术开发区•铁山区地震安评 HSZK21 孔深20.00~24.00m 第5/5箱

黄石经济技术开发区•铁山区地震安评 HSZK21 孔深5.10~10.10m 第2/5箱

黄石经济技术开发区•铁山区地震安评 HSZK21 孔深15.10~20.00m 第4/5箱

ZK22 钻孔岩芯照片

黄石经济技术开发区·铁山区地震安评 HSZK22 孔深5.00~10.00m 第2/3箱

黄石经济技术开发区·铁山区地震安评 HSZK22 孔深10.00~19.00m 第3/3箱

ZK23 钻孔岩芯照片

黄石经济技术开发区·铁山区地震安评 HSZK23 孔深0.00~5.00m 第1/3箱

黄石经济技术开发区·铁山区地震安评 HSZK23 孔深15.00~38.00m 第3/3箱

黄石经济技术开发区·铁山区地震安评 HSZK23 孔深5.00~15.00m 第2/3箱

			工程公类	工作	分类与定名	GB50021-2001	粉质黏土	粉质黏土	松后梨十							瓦 共 1 页
		7-25	楼法	曲室系	数い	1								+		第一一
		-12-13	界限	不均匀至	家数の	1										
		2019.		限制 数	1960	uuu	0.010	0.012	0.012							
		5日期:	植径	平均 哲 35	d50	mm	0.007	0.009	0.008							
		报告	規告	国家	d30	mm	0.002	0.005	0.003							凝
	IIV			有效粒	径 d10	mm										- 100
	114	(X)		格	0.005	%	41.3	32.1	37.1							■:<
) L	司 (武	成	粉 粒 0.075	~ 0.005	%	56.3	57.8	54.2							」 第
测中心		;限公	1 组	组 砂 0.25	0.075	%	1,1	6.1	5.8							
武學校	■K	F究院7	颗料	中 砂	0.25	0%	0.8	0.7	1.3							
武汉)	17	在勘测母		2:00	0 0.50	%	0.5	1.2	1.1							1
No Internet	E	如至此	li el	性音を	. 2.0	%	17	8 2.	0.0			_	-			
后限公 話有眼 3	AN I	監地	的水母	性自致被指数	p II	1	5.5 0.0	1.1 0.0	.6 0.2			-	+			- ^ŵ
Ser State	the state	王王	学品	聖吉夏	- d	10	.2 1(.2 14	5 15			-	+		_	
來勘測	R	100	0mm	发 珢	VL W	20	7.7 21	3.3 19	5.1 20	_		+	+		_	-
	24945 23	19-74		-J 445 X3	2		52 37	42 33	38 3(-	-		-	-
米	Н	SY201	1	不度日		1	1 0.6	3 0.6	0 0.6	_		_				-
		.: 中	性	饱和度	I Sr	%	5 94.	5 86.	101							
	+	工程為	物理	干密度	d	/cm ³	3 1.6	0 1.6	6 1.6							大设
			日的	短客度	d.	00	4 2.0	3 2.0	3 2.0							
		安评	-	山北重	5	1	4 2.7	3 2.7	6 2.7		_	_				124
		< 地震		空水室	*	2	0 22	0 20	0 23.		_	_				- Da
		X铁山		取土深度	Ś	LII CO C	5.00-3.2	1.2-00.2	5.80-4.0							stay
R	080394	黄花和加发		钻孔编号	•	-	1-GUNZCH	1-71VJCH	1-FINICH	W Y 2A						·承译禄:
Σ	171701	工程名称方		室内编号		-	A20101005	CU2121010CA	006161074							试验。

分析测试报告

yangcc04@126.com

370112007

- 报告日期 2019年12月
- 联系电话 13515310258
- E-mail:

• 基本概念和相关参数

释光是硅酸盐矿物晶体接受电离辐射作用积累起来的能量在受热或光激发 时重新以光的形式释放出能量的一种物理现象。光释光测年(Optically Stimulated Luminescence,缩写为 OSL)是释光测年(Luminescence Dating)方法中的一种。对 于沉积物光释光测年,若沉积物在沉积过程中石英、长石等矿物的光释光信号被 晒退归零,同时矿物在沉积后基本处于恒定的电离辐射场中(即环境辐射剂量率 恒定),那么,石英、长石等矿物的光释光信号强度与矿物所吸收的电离辐射剂 量的时间成正相关的函数关系,沉积地层的年龄就可通过测定石英、长石等矿物 天然光释光信号强度所对应的电离辐射剂量即等效剂量(D_E)和环境剂量率(D) 来获得,简要表示如下:

年龄(A)=等效剂量(D_E)/环境剂量率(D)

等效剂量(*D*_E)又称古剂量(P),即被测样品产生天然积存释光所需要的辐射剂 量(单位 Gy),可通过矿物释光强度及其对核辐射剂量响应程度的实验测量来确 定;环境剂量率(D,单位 Gy/Ka)是被测矿物单位时间内吸收周围环境中²³⁸U、²³²Th 及其衰变链产生的α、β和γ辐射剂量和⁴⁰K产生的β和γ辐射剂量,以及宇宙射线 提供的少量辐射剂量。

• 前处理与测样制备

样品采用了单片再生法测量(SAR),在暗室(照明光源为(661±15)mm的 发光二极管光源),开包装,去掉四周可能曝光的部分,保留中心部位未污染、 曝光的样品供等效剂量测定,并取 20 克可能曝光的样品收集起来烘干用于环境 剂量率测定。中心样品在烘箱中低温(40℃)烘干,筛选出 90-300 µm 的组分 放在 1000mL 烧杯中,先后加 30%的双氧水(H₂O₂)和 30%的盐酸(HCL), 除去样品中的有机质和碳酸盐类。期间多次搅拌,待反应充分后,加氨水中和, 然后用高纯水反复冲洗至中性,低温烘干。用 40%的氢氟酸(HF)腐蚀 40 分钟 以清除长石与受α照射的石英表层,再加 10%的盐酸(HCL)去除氟化物,根 据长石对红外信号敏感而石英不敏感的特征,利用红外释光(IRSL)信号及石英 110 度热释光峰来检测石英纯度,红外信号较高,110 度热释光峰不规则说明还 有长石存在,继续加 HF 刻蚀,直至红外信号较低(IRSL/OSL<10%)且热释光 峰形态较好,说明样品中均没有长石类矿物污染,光释光信号(OSL)基本来自 石英。待样品处理完,将提纯后的石英单层平铺小托盘上,每个托盘大约有几百 个石英颗粒,制成测片待测。

等效剂量(DE)测定

样品等效剂量的测试的丹麦 Risoe DA-20-C/D 型热/光释光自动测量系统上 完成,该系统的激发光源分别为蓝光二极管(λ=470nm)。检验长石组分所用 的红外激发波长为 830nm。测试过程中两种光源的最大功率为 90%。光释光信 号经由 7.5mm 厚的 Hoya U-340 滤光片进入 9235QA 光电倍增管(PMT)内被探 测并记录,人工辐照源为 ⁹⁰Sr/⁹⁰Y。

样品的天然释光等效剂量(即古剂量)测定采用粗颗粒石英矿物测试,光源选择蓝光激发。采用单片再生法(SAR)获得所有样品的等效剂量。单片再生法(Murry et al., 2000, 2003)流程如表1所示。计算等效剂量时,选取前1.6s(前10个通道积分值)的释光信号值,进行线性或指数拟合建立光释光信号的剂量响应曲线即光释光生长曲线,确定样品的等效剂量(*D*_E)值。

步		
骤	实验过程和条件	说明
1	辐照剂量 Di(i=0,1,2,3,4,0,1)	i 为循环数;前一个 i=0 时为样品天然剂量,后一个 i=0 时为零剂量点,后一个 i=1 为循环点,检验流程的可靠性
2	预热 260°C 10s	去除热不稳定信号
3	蓝光激发 40s,激发温度为 125℃	获得光释光信号 Li
4	辐照试验剂量 Dt	用以校正释光感量变化
5	热释光预热至 220℃	去除热不稳定信号
6	蓝光激发 40s,激发温度为 125℃	获得光释光信号 Ti
7	蓝光激发 40s, 激发温度为 280℃	高温激发清空快速组分
8	循环至第1步	下一个测量循环 4日 10 70 70 10

表1 SAR 法测量流程(Murry et al., 2000, 2003, 经修改)

• 环境剂量率 (D) 测定

环境剂量率是释光测年的重要参数之一。样品所吸收的环境辐射剂量是由 其本身及周围沉积物中放射性核素(²³⁸U、²³²Th和⁴⁰K)的α、β和γ衰变产生的 电离辐射所提供的,同时也有宇宙射线的少量贡献。样品U、Th、K及其衰变子 体对环境剂量率的贡献通过等离子体质谱仪及全谱直读等离子体发射光谱仪测 量获得。由于前处理过程中HF已经刻蚀掉受α照射的石英表层和少量的β辐射, 计算环境剂量时不考虑α射线的贡献,同时计算β辐射剂量时乘以系数0.9。因 为水对β和γ辐射具有一定的吸收作用,样品埋藏层的含水量对样品的环境剂量 的影响也不容忽视,如果忽略含水量,环境剂量率将偏大,其最终年龄结果偏小。 算时均考虑了含水量和少量宇宙射线的影响样品

• 测年结果分析和讨论

样品的光释光测年结果和相关参数见附表 2。假定实验室测定的样品 U、Th、 K 含量及含水量可以代表样品埋藏期间的实际值,且样品采集和运输过程中未曝 光或失水分,那么附表中样品的光释光年龄代表了样品最后一次曝光距今的时 间。后附样品的能谱成分分析,元素含量见后表。

参考文献:

王旭龙,卢演俦,李晓妮,2004.红外固体二极管点阵在释光测年中的光照应用 [J],海洋地质与第四纪地质, 24:133-138.

王旭龙、卢演俦,李晓妮,2005.细颗粒石英光释光测年:简单多片再生法,地震地质,27(4):615-623.

Aitken, M.J., 1985. Thermoluminescene Dating. Academic Press, London.

Aitken, M.J., 1998. An Introduction to Optical Dating. Oxford University Press, Oxford, P.39-50.

Murray, A.S., Wintle A.G., Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements.2000,32:57-73.

Murray, A.S., Wintle, A.G., 2003. The single aliquot regenerative dose protocol: potential for improvements in

reliability. Radiation Measurements 37, 377 - 381.

表 2. 光释光年龄及参数

黄石	石经济	-技7	ド开发 区	☑•铁山区	测年样。	品结果表
实验室编 号	样品编号	埋深 (m)	环境剂量率 (Gy/ka)	等效剂量(Gy)	释光年龄(Raf	备注
19-190	YP19-1	0.2	1.7 ± 0.2	370.2±21.4	217.8 ± 12.3	释光信号近饱和
19-191	YP19-2	0.2	1.8 ± 0.2	423.7 \pm 23.1	235. 4 ± 12.8	释光信号近饱和
19-192	YP19-3	0.2	2.0 ± 0.2	491.8 ± 27.6	245.9 ± 13.8	释光信号近饱和
19-193	YP024-1	0.2	2.1 \pm 0.2	243.3±30.4	115.9±14.5	释光信号弱
19-194	YP030-1	0.2	2.1 \pm 0.2	246.7±30.9	117.5±14.7	释光信号弱
19-195	YP037-1	0.2	2.2 ± 0.3	496.3±24.9	225.6 \pm 24.9	释光信号近饱和

编号:长江质检(05)2019-12-30

大王三十

检测报告

委 托 单 位:长江三峡勘测研究院有限公司(武汉)

工程(产品)名称:黄石市开发区·铁山区地震安评

检 验 项 目:密度、含水率、比重、动弹模、阻尼比

声明

1. 本报告盖章有效,复印无效;

2. 对委托送检样品,本报告只对来样负责;

3. 对本检测报告如有疑议, 应在收到报告 15 天内向本中心书面提出;

4. 本中心对所有原始记录及相关资料承担保管和保密责任。

水利部长江科学院工程质量检测中心 地址: 武汉市黄浦大街 23 号长江科学院院内 联系电话: 027-82820012, 13886059035 邮政编码: 430010 联系人: 石正国

A Product of AN

水利部长江科学院工程质量检测中心

检测报告

一、任务来源:委托

二、试样来源及情况:送样

三、检测项目:密度、含水率、比重、动弹模、阻尼比

四、检测依据:土工试验规程(SL/T 237-1999)

土工试验方法标准(GB/T 50123-2019)

五、主要仪器设备:

	and the second se	
仪器名称	型号	编号
由子天平	PG5002-S	1118410078
	GDS DNYNS	GDS-1#
4月——十四	GDODITIO	

六、检测数量:2组

七、检测结果:见附表、附图。

检测人: 運行 (可時) 编写人: 運行 校核人: 大学新年 签发人: 它比ODC单

日期: 2019年12月25日

出て、

冰

水利部长江科学院工程质量检测中心 检测结果

附表 1-1

物理性试验成果表

					天然状态	物理性指标		
序号		深度	含水率	比重	湿密度	干密度	孔隙比	饱和度
	土样编号	(米)	W	Gs	ρ	ρ _d	е	Sr
			W 0/	00	g/cm ³	g/cm ³		%
		2620	20.5	9 79	1.92	1.47	0.848	97.8
1	HSZK06-1	3.6-3.8	30.5	2.12	1.02	1 75	0.546	98.4
2	HSZK15-1	4.2-4.4	19.9	2.70	2.09	1.75	0.040	

制表: 展行

校对: 大和手

日期: 2019.12.25

第3页共6页

水利部长江科学院工程质量检测中心 检测结果

附表 1-2

土体饱和状态动三轴试验成果表(Ke=1.0, µ=0.5)

-											1	-	
	λ_{max}					~ し/こ 木	N PO/T N						
	Y	0.036		0.054	0.073	0 096	0000	0.119	0.140	0.149		J. J, Udmax	
	$G_{\rm d}/G_{\rm dmax}$	0.678	0.0.0	0.542	0.466	0.466		0.283	0.221	0.176	H KI H	寻到, μ收(
and the second sec	G _{dnax} (MPa)			53.6							1 1 林/	山与 Eaty 并具	
	G _d (MPa)	0.00	20.02	16.0	13.8		10.4	8.4	6.5	5.2		。 ↓ 2 Ca由 E a、	
	γ _d	101.0	3.50E-04	8.06E-04	1.17E-03		1.82E-03	2.57E-03	3.41E-03	A A7E-03	4.411-00	一阻尼比, >	
	E _d (MPa)		\$ 60.1	48.1	413		31.3	25.1	19.6	16.6	D'CT	切模量、 λ-	A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OWNER OWNER OF THE OWNER O
	p ω	^{в d} 7 33F-04		2.33E-04 5.37E-04		1.001 01	1.22E-03	1.71E-03	2 27E_03	2 201 02	2.98E-U3	、Ga一动剪-	
2010 Miles	σ _d (kPa)		14.0	75 R	0.02	C.2C	38.0	A7 9			46.5	一动剪应变	
A CONTRACT OF A	σ ₃ (kPa)			30.5									
	金水	举(%)											A A A
	干密度	(g/cm [°])		1.47									
	深序 (m)			3.6-3.8									
	中世	编号					F	HSZKU6-1				い 中半 た	注:衣丁 n
	L										-	1000	

关系曲线截距的倒数。

制表:1991

日期:2019.12.25

校对: TNPr#B

院 迎(1

第4页共6页

水利部长江科学院工程质量检测中心 检 测 结 果

附表 1-3 土体饱和状态动三轴试验成果表(Kc=1.0, µ=0.5)

												٦	P			
	A max					0 966	0. 200						为1/6" ٧			
	<	0 0 28	040.0	0.000	0.075	0000	0.092	0 104		0.122	0.151	TCT'N	0 5. 6	() () () () () () () () () () () () () (
0 0	G_d/G_{dmax}	0 766	0.766 0.643			0.520 0.442 0.406 0.310				0.220	星 11 11 11					
	G _{dmax} (MPa)	192	30.2 30.2 1与Ea计算得													
19	G _d (MPa)		23.1	19.4	15.7	1.CT	13.4		12.3	0.1	r i	7.6	1	「 「 名 に 昭 に い	A DECEMBER OF	
	$\lambda_{\rm d}$		2.82E-04	5.82E-04		9.4/E-04	1.33E-03		1.57E-03	2 2 2 6 0	2.33E-U3	3.08E-03		一国尼比, >。		
	E_{d} (MPa)		69.4	583	2.22	47.1	40.1		36.8		28.1	7.00	1	□横量、 λ-		
	ε _d		1.88E-04	2 00E 0.4	10-100°C	6.31E-04	8 88F-04	0.000	1.05E-03		1.55E-03	2 AFF 03	CU-3CU.2	です」と	Do Do	
	σ _d (kPa)		13.0		0.77	29.7	2 2 5	0.00	385	2.00	43.6		40.5	本に転け	くしてる	
The second	σ . (kPa)						 (1	09						N H E	注 (宋 里、 ¹ d	
	命水	举(%)									、「」」を					
And a second sec	干密质	(g/cm^3)	(g/cm³) 1.75									E				
	5日()	沐戾 (III)				4. 2-4. 4									一动应力、	远距的倒数 。
	相当	中中	A 第					1171/15	T-CTV7CH						注:表中0	关系曲线截

制表:图门

日期:2019.12.25

校对: North

「大、大ち、

水利部长江科学院工程质量检测中心 检测结果

附表 1-4 不同γd下的 Gd/Gdmax、λ计算值

			114 4											
		参数	田正	Yd										
试样	Кс		田山	F 10-6	1,10-5	5×10-5	5×10 ⁻⁵ 1×10 ⁻⁴		1×10 ⁻³	5×10 ⁻³	1×10 ⁻²			
KAV11		2	/кра	5×10°	1×10	7/10	110	0.000	0.402	0.162	0.088			
	10	G _d /G _{dmax}	- 50	0.995	0.990	0.951	0.907	0.660	0.492	0.102	0.000			
US7K06-1				0.000	0.001	0.004	0.008	0.037	0.064	0.160	0.197			
H32K00-1	1.0				0.001		0.000		0.510	0.172	0.094			
		C.IC.		0.995	0.990	0.954	0.912	0.675	0.510	0.172	0.001			
HSZK15-1	10	Gd/Gdmax λ	- 50	0.001	0.001	0.005	0.010	0.044	0.076	0.177	0.213			
	1.0				0.001		0.010							

校对: 大利考虑

制表: 147

日期: 2019.12.25

用

第6页共6页

1